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Abstract- This paper presents an efficient Additive
Operator Splitting (AOS) scheme for solution of non-linear
PDEs arisen from minimization of multiplicative noise
removal model [12]. It is a stable, fast and easy method to
implement, avoids the complicated governing equations and
appear to converge in fewer iterations. This method
successively de-noised the images. Furthermore, fixed point
and semi-implicit schemes are also implemented to yield our
desired results. Experiments demonstrate that, under typical
accuracy requirements, AOS scheme is more efficient than
the widely used iterative schemes of fixed point and semi-
implicit.
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I. INTRODUCTION

Image de-noising has been drawn a greatly attention
recently. It is an inverse problem encountered in a wide
variety of image processing fields including remote
sensing, medical and astronomical applications [8, 18, 12].
In this paper, we focus on multiplicative noise removal
problems. It is one of the more complex image noise. It is
signal independent, non-Gaussian and spatially dependent.
It appears in various image processing applications e.g. in
Synthetic Aperture Radar (SAR), Utrasound imaging or in
connection with blur in electronic microscopy, single
particle emission computed tomography (SPECT) and
Positron Emission Tomogra phy (PET). Many approaches
have been proposed to tackle this problem. Among the
famous ones are wavelets approaches, stochastic
approaches, and variational approaches which is presented
by Rudin, Osher and Fatemi (ROF) [14], it become
evident that the variational approaches to the image
denoising problem can yield often excellent results. In the
literature, there exist several variational approaches
devoted to multiplicative noise removal problems: z = Φη.
The first TV-based multiplicative noise removal model
was introduced by Rudin etal(RLO-model) [13] which
used a constrained optimization approach with two
Lagrange multipliers.
Multiplicative de-noising model (AA-model) with a fitting
term obtained from a MAP (Maximum a Posteriori) was
presented by Aubert and Aujol [19, 1]. Shi and Osher [14,
12] adopted the data term of the AA-model and replace the
regularizer TV (Φ) by TV (logΦ) and letting w = logΦ,
they derived the strictly convex TV model (SOmodel) [5].
Similarly with SO-model, Bioucas and Figueiredo
converted the multiplicative model into an additive one by
taking logarithms and introduced Bayesian type
variational model[12]. Steidl and Teuber [12, 20]
presented a variational model consisting of the 1-
divergence as data fitting term and the TV-seminorm as

regularizer. A variational model involving curvelet
coefficients for cleaning multiplicative Gamma noise was
introduced in [12].

Most numerical schemes are based on the simplest finite
difference discretization by means of a so called explicit or
Euler-forward scheme. This scheme requires very small
time steps in order to be stable. Hence the whole
procedure is rather timeconsuming. In the present paper,
we are going to address this problem. We present a novel
type of separable scheme which do not suffer from any
time step size restriction since all stability relevant terms
are discretized in an implicit manner. The goal of this
paper, is to apply Additive Operator Splitting (AOS)
Scheme and to compare its results with fixed point and
semi-implicit schemes [2, 11, 9, 3].

II. VARIATIONAL MODEL

According to [12] by applying the Total Variational
(TV) approach, a functional well-adapted to the removing
of multiplicative noise is given by:

where, the first term is the image fidelity term which
measures the violation of the relation between Φ and the
observation z. The last two terms are the regularization
terms, where γ1, γ2 are regularization parameters. The
formal Euler-Lagrange equation [12] for any solution of
functional (1) is as follows.

since Φ > 0 , then the Euler-Lagrange equation of
minimizing can be rewritten equivalently as
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with the Neumann adiabatic condition along the boundary

of the image domain. Notice that  > 0, since Φ > 0.
Equation (4) can be expressed in operator notation

where L(Φ) is the linear diffusion operator whose action
on a function χ is given by:

The fixed point iteration is then

Finite difference method [10, 6, 4], is used commonly
for discretization of Partial  ifferential equation (PDE).
Equation (5) can be approximately computed by the first
order accurate finite difference schemes described as
follows [13, 12],

where m(a, b) = (sign(a)+sign(b))/2, min(|a|, |b|).
Here, we denote the space step size by h = 1, ϵ > 0. These
schemes yield approximate form of equation (6) :

The matrix operators L, are symmetric and positive
definite and sparse. Following experimental results will
illustrate the performance of the numerical scheme [7].

III. NUMERICAL METHODS

Explicitly time marching methods have been applied for
solving TV-image models [16], due to their simplicity but
as it is conditionally stable. Therefore, we use the Semi-
Implicit (SI) scheme and Additive Operator Splitting
(AOS) which are unconditionally stable. To solve equation
(4) with an artificial time step Δt i.e the following
problem:

with the Neumann adiabatic condition along the boundary

of the image domain. Where
 1 2

1
( ) 

 
  

  
  .

The grid-point (i, j) is located at

Where

The value of z at each grid (i, j) is denoted by z(i,j)

where as
1 2

,
b a d c

h k
m m

 
  are the grid spacings in the

x, y-directions.
A. Semi-Implicit Scheme

Refer to [3, 17], at time tn = nΔt, denote Φn i,j = Φ(tn,
xi, yj) an approximation of Φ(t, x, y) and using equation
(4–12) we obtain the following linearized equation
through semi-implicitness is given as:

(13)

Denoting the coefficients of 1 1 1 1
1, 1, , 1 , 1, , ,n n n n

i j i j i j i j
   
       ,

by A1, A2, A3, A4, respectively, we get the following system
of linear equations

which may be solved by an iterative method as a direct
solution can be expensive for images of large size.
B. Additive Operator Splitting Scheme

It is already stated that semi-implicit scheme is
unconditionally stable but it is can allow large time steps.
Its main drawback is the computational cost of the
associated linear systems for large images. Hence, we
need an iterative method which is unconditionally stable,
time efficient and easy to implement to solve the PDEs. So
we introduce the AOS scheme [3, 15], which provides an
equally accurate and yet more efficient SI-scheme by
splitting the two dimensional spatial operator into two
separate 1- dimensional space discretizations and then
applying 1-dimensional SI-scheme in turns. Then two
tridiagonl systems are solved per iteration than a band five
system. Following equation (12) we have
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with the Neumann adiabatic condition along the
boundary of the image domain. Where

   1 2          . Consider (15) in the form

After we solve the system of equations (17) in the x-
direction, we then solve a similar system in the y-direction
before averaging the two solutions. In matrix notation the
process can be written as

where I is the identity matrix, and Al forl = 1, 2. are
tridiagonal matrices derived from (18).

IV. EXPERIMENTAL RESULTS

In this paper, experiments are carried out on gray scale
images of different sizes (pixels) and ranges from [0 127]
to [0 2047] with multiplicative noise. Experimental results
are given to demonstrate the performance of AOS and
comparison is made with numerical schemes of semi-
implicit, fixed point. Figure1 shows test images for de-
noising namely Problem1, Problem2, Problem3,
Problem4, Problem5, and Problem6. The de-noised images
are shown in figure2, figure3, figure4, figure5, figure6 and
figure7 for visual comparison. Figure2 consists of
problem1 in which artificial speckle is added, is de-noised
by semi-implicit, fixed Point and additive operator
splitting schemes by choosing γ1 = 10, γ2 = .007. Figure3
shows problem2 includes the lena famous natural image,
in this case the restoration of image is made by applying
semi-implicit, fixed point iterative and additive operator
splitting schemes with γ1 = .005, γ2 = .0005. Figure4
involves problem3, which is restored by semi-implicit,
fixed point, additive operator splitting scheme, with γ1 =
.01, γ2 = .0001. Figure5 shows problem4, which is
restored by semi-implicit, fixed Point, additive operator
splitting scheme, with γ1 = 15, γ2 = .003. Figure6 contains
problem5 which shows the real-time ultrasound image of
an human eye corrupted by speckle, is restored by semi-
implicit, fixed point, additive operator splitting scheme,
with γ1 = .003, γ2 = .0009. Here in this case more better
result is needed which will be address in our future work
by applying multi-grid algorithm. Although by comparing
the results of AOS with semi-implicit and fixed-point it
can be seen that AOS is effective and efficient than the
other two iterative schemes. Figure7 shows problem6
corrupted by multiplicative noise naturally, is restored by
semi-implicit, fixed Point, additive operator splitting
scheme, with γ1 = .001, γ2 = .091. In this case it is
concluded that AOS results are much better and fast than
the iterative schemes of semi-implicit and fixed-point. By
visual comparison better performance of AOS can be seen
over semi-implicit and fixed-point iterative schemes in all
artificial and natural images. In addition, from table1 one
can conclude that AOS is more efficient and effective.
Furthermore, we gave the speed comparison of the three
schemes which includes the number of iterations (It.) and
the CPU time for the images of different sizes. Following
abbreviations may be helpful for reading the given table
which is given as under: SIM: Semi-Implicit Scheme,
FPIS: Fixed Point Iteration Scheme, AOS: Additive
Operator Splitting Scheme.
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C. Test Images for De-noising
Following are the test images which will be used for de-

noising throughout in this work, which are assigned names
as Problem1, Problem2, Problem3, Problem4, Problem5
and Problem6.

Fig.1. Test images for de-noising

Figure.2. Problem1 (2562) de-noised image by semi
implicit, fixed point, additive operator splitting schemes
with number of iterations=55, 105, 17 by choosing γ1 = 10,
γ2 = .007.

Fig.3. Problem2 (2562) de-noised image by semi
implicit, fixed point, additive operator splitting schemes
with number of iterations=26, 70, 5 by choosing γ1 = .003,
γ2 = .0005.

Fig.4. Problem3 (2562) de-noised image by semi
implicit, fixed point, additive operator splitting schemes
with number of iterations=34, 30, 5 by choosing γ1 = .001,
γ2 = .01.

Fig.5. Problem4 (2562) de-noised image by semi
implicit, fixed point, additive operator splitting schemes
with number of iterations=62, 20, 10, by choosing γ1 = 15,
γ2 = .003

Fig.6. Problem5 (2562) de-noised image by semi
implicit, fixed point, additive operator splitting schemes
with number of iterations=15, 100, 8, by choosing γ1 =
.003, γ2 = .0009.

Fig.7. Problem6 (2562) de-noised image by semi
implicit, fixed point, additive operator splitting schemes
with number of iterations=7, 40, 11, by choosing γ1 = .001,
γ2 = .091

Table 1: Comparison of semi-implicit, fixed point
iteration, additive operator splitting schemes for
multiplicative noise images of Problem1 (1282 −20482)
and Problem3 (1282 − 20482) with cpu-time and number
of iterations

V. PEAK SIGNAL-TO-NOISE RATIO (PSNR)

We measure the quality of the restored image by the
peak signal-to-noise ratio (PSNR) defined by



Copyright © 2012 IJECCE, All right reserved
1006

International Journal of Electronics Communication and Computer Engineering
Volume 3, Issue 4, ISSN (Online): 2249–071X, ISSN (Print): 2278–4209

where z is the original image, Φ is the restored image
and m1 × m2 is the size of the image.

Table 2: It shows the Peak Signal-to-Noise Ratio
(PSNR) results by semi-implicit, fixed point, additive
operator splitting schemes on gray level image of
problem1 and problem3. From the table, we can see that
the PSNR of the image restored by using AOS is more
than those restored by using the other schemes.

VI. CONCLUSION

In this paper, accurate additive operator splitting scheme
for multiplicative noise/speckle removal is presented.
Comparing the experimental results of two numerical
schemes fixed point and semi-implicit with AOS, it is
found that Additive Operator Splitting scheme is simple,
reliable and more efficient than iterative schemes of fixed
point and semiimplicit. Future work is needed to apply
multi-grid algorithm to yield more effective and better
results as the technique has the advantage of speed of
computation and has a large potential in real-time
ultrasound imaging enhancement. It may also offer a
particular advantage for processing very larger images.
Furthermore, it is intended to apply Additive
Multiplicative Operator Splitting (AMOS) scheme for
PDEs arisen from minimization of variational models.
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