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Abstract - Multiplicative noise removal based on total
variation (TV) regularization has been widely re-
searched in image science. In multiplicative noise
problems, original image is multiplied by a noise rather
than added to the original image. Usually, the logarithmic
amplification transforms the multiplicative noise model
into the classical additive noise problem. This additive noise
problem is then solved by ROF [23] model. In this paper
we propose a model for multiplicative noise based on
Euler’s Elastica model for additive noise [8]. Numerical
examples demonstrate that the proposed algorithm is able
to preserve small image details while the noise in the
homogeneous regions is removed sufficiently. As a
consequence, our method yields better denoised results than
those of the current state of the art methods with respect
to the SNR values.
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I. INTRODUCTION

The standard statistical models of coherent imaging
systems, such as synthetic aperture radar/sonar
(SAR/SAS), ultrasound imaging, and laser imaging, are
supported on multiplicative noise mechanisms. Speckle is
a phenomenon whose configuration is random and it
yields random fluctuation of the complex reflectivity. The
statistical properties of speckle have been widely
studied and there is a large body of literature [10, 16].
Assuming no strong specular reflectors and a large
number of randomly distributed scatterers in each
resolution cell (relative to the carrier wavelength), the
squared amplitude (intensity) of the complex reflectivity
is exponentially distributed [16]. The term multiplicative
noise is clear from the following observation: an
exponential random variable can be written as the
product of its mean value (parameter of interest) by an
exponential variable of unit mean (noise). The scenario
just described, known as fully developed speckle, leads
to observed intensity images with a characteristic
granular appearance due to the very low signal to noise
ratio (SNR). Notice that the SNR, defined as the ratio
between the squared intensity mean and the intensity
variance, is equal to one.

Image denoising is an inverse problem widely studied
in signal and image processing fields. The problem
includes additive noise removal and multiplicative noise
removal. In this paper, we will mainly discuss the
multiplicative noise removal problem. Multiplicative
noise removal problem can be modeled in the
following way

z(x, y) = g(x, y)v(x, y), (1)
where z is the observed image, g is the original image
and v is the noise which follows a Gamma law with
mean one.

II. PREVIOUS WORK

In many papers, multiplicative noise models have
been discussed. One of the method is local linear
minimum mean square approaches [13, 12], anisotropic
diffusion methods [15, 24], These models are based on
statistical information of images and noise, so we will
not discuss these models in detail as in this paper our
main focus is on variational models.

In recent years, variational methods have got great
success in reducing the multiplica- tive noise owing to
the use of total variation (TV) and nonlocal total
variation (NLTV) regularizations. The TV based
variational models for multiplicative noise removal have
been proposed in many literatures like Rudin et al.[17],
Aubert and Aujol [1], Shi and Osher [19], Huang et al.
[11], Steidle and Teuber [20], Li et al. [14], etc. The
variational based NLTV models [10] have also been
widely applied in image restoration [25], [20]. Steidl
and Teuber [20] employed the NLTV as a regularizer to
recover the multiplicative noisy images. Since the
NLTV norm uses the relevant image patches, that’s why
it gives very good qualitative results.

The elastica model [8] minimizing the Euler elastica
energy for image inpainting problem is the following
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where a and b are arbitrary positive constants, λ > 0 is a
penalty parameter, p = 2 is usually chosen, u = u(x, y) is

the true image to be restored and . u
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curvature.
The virtue of equation (2) is that the regularization

using the Euler elastic energy penalizes the integral of
the square of the curvature along edges instead of only
penalizing the length of edges as the TV model (if
taking b = 0) does [7]. Motivated from the performance
of Euler elastica model in image inpainting and
denoising, in this paper we would use this idea towards
image multiplicative denoising.

III. LI-LI HUANG MODEL (M1)

To solve the problem of multiplicative noise removal
(1), Li-Li Huang et al. [21] proposed a nonconvex
Bayesian type variational model for multiplicative noise
removal which includes the total variation (TV) and the
Weberized TV as regularizer. They propose the following
minimization problem
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Thus they consider the following minimization problem
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Here z > 0 in L∞(Ω) is the given data in the model. The

first two terms are the regularization terms, while the third
one is the nonconvex data fidelity term following the MAP
estimator for multiplicative Gamma noise, μ1, μ2 are
regularization parameters.

Minimization of the functional (5) leads to the following
Euler-Lagrange equation
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Since ϕ > 0, so the Euler Lagrange equation of the

minimization can be written as
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with Newmann boundary conditions. Fixed point
iterations are used to solve this equation (8)

   L z    (9)

Where L(φ) is the linear operator whose action on the
function q is given as
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The finite difference method is communally used for
discretization for partial differential equation (PDE). So
(9) can be computed approximately by the first order

accurate finite difference method as follow [21],

     
     

1, , , 1 ,

22

, , , ,

22

, , , ,

,

( ; (

( ; (

x i j i j y i j i j

x i j x i j y i j y i j

y i j y i j x i j x i j

D D

D D m D D

D D m D D









 
 

  

  

           

        

        
Where m[a, b] = (sign(a) + sign(b))/2.min(|a|, |b|).

Here we take the space step size by h = 1, ξ > 0.
These schemes yields approximate f o r m (10)
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Where L is the matrix operator, which are
symmetric, positive definite and sparse

IV. CHEN SHENG MODEL (M2)

Let us consider equation (1), by applying the
logarithmic amplification, the equation (1) will transform
into classical additive noise form [18]:
log(z(x, y)) = log((g(x, y)) + log((v(x, y)). (12)

The above expression can be rewritten
f(x, y) = φ(x, y) + η(x, y), (13)

where f (x, y) is given noisy image having additive
gaussian type noise η(x, y) and φ(x, y) is the noise free

image, where (x, y)²R2. The minimization of the above
equation (13) by ROF [23] is given as
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   is the regularizer term.

Minimization of the above functional gives the
following Euler Lagrange’s equation [23]
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with Newmann boundary condition on the domain of
the image. The corresponding time marching equation
from (15) is
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Numerical solution of the differential equation given
in (16) can be found in similar lines as done in [23], for

given u(x, y, 0), t > 0, x, y R and also
n




= 0 on

∂Ω. Its numerical solution is given as follow.
Let xi = ih, yj = jh, i, j = 0, 1, 2, 3...M with Mh = 1, tk =

kΔt, k = 0,1, 2, ...,  , , , ,k
i j i j kx y t    0
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( , )ih jh have been chosen initially. In this case ϕ
has mean 0 and L2 norm one. The numerical
approximation for (17) is given as
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V. THE PROPOSED MODEL (M3)

As form the minimization approach (14) we have the
regularizer term
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Which is the curvature based regularization instead of

TV norm. Where a and b are the parameters and
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Minimization of the above functional leads to the
following Euler Lagrange’s equation [9]
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Where  is the normal vector and   is the

corresponding tangent vector i.e.
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Numerical solution of the differential equation given

in (19) can be found in similar lines as done in [6]. We
discretize (19) as follow.
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Curvature term. These are approximated by min-mode
of two adjacent whole pixels.
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By similar way we can find the approximations

for 2
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VI. EXPERIMENTAL RESULTS

Here we take some experimentionl results on
different images by the proposed model M3 and
models M1 and M2 which show that proposed model M3
is more accurate and efficient than that of models M1
and M2.

The following are some noisy images for the
compression of the models M1 and M2 and the
proposed model M3.

Fig.1. The noisy images: (a) Noisy “Lena” image
with L= 1.5, (b) Noisy “Camera man” image with
L= 1.7, (c) Artificial synthetic image with L= 1.9,
(d) Artificial synthetic image with L= 2.5

(a) Denoised
image by M1

(b) Denoised
image by M2

(c) Denoised
image by M3

Fig.2. The restored “lena” images: (a) Denoised
image by model M1, (b) Denoised image by model M2,
(c) Denoise Image by proposed model M3

(a) Restored
image using M1

(b) Restored
image using M2

(c) Restored
image using M3

Fig.3. The restored “Cameraman” images: (a)
Denoised image by model M1, (b) De- noised
image by model M2, (c) Denoise Image by
proposed model M3

(a) Restored
image using M1

(b) Restored
image using M2

(c) Restored
image using M3

Fig.4. Restoration of an artificial synthetic image: (a)
Denoised image by model M1, (b) Denoised image by
model M2, (c) Denoise Image by proposed model M3

(a) Denoised
image by M1

(b) Denoised
image by M2

(c) Denoised
image by M3

Fig.5. Restoration of an artificial synthetic image: (a)
Denoised image by model M1, (b) Denoised image by
model M2, (c) Denoise Image by proposed model M3

In Fig. 2, M1, M2 and M2 are applied on a real Lena
image, it can be seen that the results from M3 are of
better quality than M1 and M2. In Fig. 2(a), results
obtained by applying M1 and in Fig 2(b) results
obtained by applying M2 and Fig 2(c) our model M3 is
applied. Parameters used are µ1 = 0.05, µ2 = 7 andλ =
8 anda = 0.005, b = 1e−5, λ = 5 respectively . In Fig. 3
M1, M2 and M3 are tested on a real cameraman image.
Fig. 3(a) results with M1 is given and in Fig. 3(b)
restoration o f image using M2 is presented with µ1 = 2,
µ2 = 3, and λ = 6.5. In this case performance of our
model M3 is justified as well with parameters a =
0.005, b = 1e −3, λ = 7 respectively.

In Fig. 4 all the three methods are implemented on
an artificial image and can be seen that our method M3
performed very well than M1 and M2. In Fig. 4(a) a
noisy synthetic image which is denoised by M1, in Fig.
4(b) also denoised by M2 and in Fig. 4(c) also denoised
by our proposed method with parameters µ1 = 0.05,
µ2 = 7,and λ = 6.5 and a = .05, b = 1e − 5, λ = 8. In
Fig. 5 all the three methods are tested on another
artificial image with the following parameters µ1 =

0.7, µ2 = 1 and  = 5.8 and a = 0.01, b = 1e −3, λ = 8.

VII. PEAK SIGNAL TO NOISE RATIO (PSNR)

We also measure the quality of restoration of the
restored Image by peak signal -to-noise ratio (PSNR) of
the three models as follow;

2

10 2

max{ *}
10 log

*

M N u
PSNR

u u

    
  
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where *,u u and M×N are the original, the restored and

size of the image, respectively.
Problem PSNR

Model M1 Model M2 Model M3
Problem 1
Problem 2

26.12
27.69

25.79
26.37

27.03
28.21

Table 1: This shows the comparison of PSNR the three
models M1, M2 and M3 respectively. So the greater the
PSNR, the better will be the restored image quality.

This table shows that the PSNR of the proposed model
M3 is greater than models M1 and M2, so the image
quality of model M3 is for better than models M1 and M2.
We also note that the PSNR of model M1 is grater than
model M2 it means that model M1 is better than model
M2 in image quality, which are also conformed for the
experimental results.
7.1 Conclusion

In this paper, a new model for the for speckle
suppressions ultrasound images is presented. The main
invitation of this model is the use of TV regulation to
reduce the ultrasound images. Here the proposed
model M3 is for better than that of models M1 and M2
in image quality.
7.2 Appendix

To derive the Euler lagrange equation (19) so we use
the 1st variation or optimality condition of the
functional (18) that is

      

 

1 2
0

3

0

0 (20)
2

d d
E aE bE

d d

E

  







     

   


It means that we split the energy into three parts ie

   1 2,E E  and  3E  respectively.

   

   
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 










       

  
             

       
   






Now to compute E1:

    1
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d d
E dxdy

d d
 

 
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d d
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But at the   . 0v  . So above equation can be

written as

    
 1

0

. (21)
d
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To compute E2:
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From (22) we have
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Also from (25) we have
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But as on the 0v  . So (28) becomes
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Now put equations (27) and (29) in (23) we get
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From (20), (21), (30) and (31) we have
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