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Abstract – In this paper, the performance of commonly 

used Motion Estimation (ME) algorithms are analyzed in 

terms of search point reduction and ranking for hardware 

implementation. Since number of searching point is not a 

direct measure of hardware performance, we first define a 

cost function of accessing data in memory. Then, we make 

adjustments on the existing ME algorithms to minimize the 

problem of memory access by reordering the sequence of 

searching points, where the number of searching points and 

MAE/PSNR remains the same as the original algorithms. 

Finally, we calculate the memory cost improvement of each 

algorithm. Using the present analysis we see that the cost 

function of accessing data in memory can be saved from % �� �% and the number of search point can be saved 

from  % �� %. The experimental results showed that the 

ranking based on memory access cost for small motion video 

is � � > � > � > � > �� > �� > � and for 

high motion video the ranking is memory access cost is � � > � > � � > �� > � > �� > � with lower 

computational complexity and similar video quality is 

maintained. 

 

Keywords – H.264/AVC, Memory Access Cost, Motion 

Compensation, Motion Estimation, Search Algorithm, Search 

Point. 

 

I. INTRODUCTION 
 

Motion Estimation has proven to be effective to exploit 

the temporal redundancy of video sequences and is 

therefore a central part of the ISO/IEC MPEG-1, MPEG-2, 

MPEG-4, CCITT H.261/ITU-TH.263 and H.264 video 

compression encoder algorithms [1]. Motion estimation 

[2] is used also for other applications than video encoding, 

like image stabilization, motion segmentation, and image 

analysis. However, the requirements for these applications 

differ significantly for video encoding algorithms: Motion 

vectors [3] have to reflect the real motion within the image 

sequence; otherwise the algorithms will not give the 

desired results. For video encoding the situation is 

different. Motion vectors are used to compensate the 

motion within the video sequence and only the remaining 

signal (prediction error) has to be encoded and transmitted. 

Therefore, the motion vectors have to be selected in order 

to minimize the prediction error and the number of bits 

required to code the prediction error. Motion estimation is 

in most cases based on a search scheme which tries to find 

the best matching position of a 16×16 macro block (MB) 

of the current frame with a 16×16 blocks within a 

predetermined or adaptive search range in the previous 

frame. The matching position relative to the original 

position is described as the motion vector which is (after 

subtraction of the predictor and variable length coding) 

transmitted in the bit stream to the video decoder. 

Fast motion estimation (ME) algorithms [4] shown that 

they can save a lot of searching points, but they all based 

on an assumption that all data are accessed randomly, that 

means they assume the whole memory block is refreshed 

for each searching points and also the sequence of 

searching points does not accounted under this 

assumption. It is very different from the actual hardware 

environments that direct implementation of these 

algorithms may not be efficient. 

There are two major factors for a ME algorithm affects 

the hardware to be efficient. One is memory access 

efficiency and another is pipeline efficiency [5]. For 

memory access, while using a simple architecture that the 

video block data is accessed row-by-row (or column-by-

column); if the block distortions are measured on 

neighboring locations, it is not necessary to refresh the 

whole block thus save the bandwidth of the data bus. For 

instant, one step up, down, left, right movements are very 

efficient since it only requires replacing single row or 

column of memory instead of reloading the whole block. 

We can see that the memory access will be efficient if we 

keep the searching steps small. On the contrary, we should 

prevent diagonal move or random jump since these moves 

requires refreshing more data or almost the whole memory 

block. 

For pipeline efficiency, if a fixed searching sequence 

can be defined, all video data can be queued up so the 

block distortion measure can keep working thus the 

hardware can be utilized. But for fast ME algorithms the 

further searching path always depends on distortions of the 

previous searched points [6]. For handling uncertain future 

searching point, prediction can be used to pre-fetch the 

data for next searching point. But when the prediction is 

wrong the penalty might be serious since the pipeline need 

to be cleared and data should be reloaded. If we want a 

fast ME algorithm to be pipeline friendly we should keep 

the number of branches to be as small as possible or make 

the branches to be predictable. In this paper the standard 

ME algorithm are analyzed in details and efficient 

techniques are introduced for ordering them in different 

kind of high and low motion video. The search point 

reduction and calculation of memory access cost will be 

helpful to minimized computational complexity and 

motion estimation time for further hardware 

implementation.   

The rest of the paper organized with section II describes 

the memory access cost function. Section III gives the 

adjustment of memory access on different well-known 
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motion estimation ME, section IV describes experimental 

set up, and conclusion is given in section V. 

 

II. MEMONRY ACCESS COST FUNCTION 
 

The definition of memory cost function is based on the 

following assumptions for simple hardware architecture 

[7]:  

(i) Time of accessing row or column memory is the 

same. 

(ii) No carry-in from previous motion estimation. 

(iii) Single port memory is used. 

(iv) The video is on a 2D array in the memory. 

The memory cost function is defined as: 
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where, Cmem is the memory cost function for motion 

estimation at point (x,y), M, N is the macro block size, 

usually × , ��� is the memory cost for moving 

from searching point to , �1 is the City Block 

distance between the searching point  and , City 

Block distance is used since it is the same as the number 

of row/columns need to be replaced in the movement, � is 

the number of searching points. 

 

III. ADJUSTMENT FOR MEMORY ACCESS 

FRIENDLY ON MOTION ESTIMATION 

ALGORITHM 
 

A. Full Search  
First, it is the exhaustive search [8, 9] that scans all the 

points in the searching area and it is trivial to form a 

pattern for efficient memory access. For � ± , ±  area, 

there are 225 searching points and the memory cost will 

be +  =  . An example of full searching is 

shown in Fig.1 below. 

B. Three Step Search (3SS)  
3SS uses square search patterns three times with the 

searching pattern size reduced by half for each step[10]. 

For a searching area ± , ± , searching patterns are ×, ×   ��   × . The number of searching point is 

fixed at 25. The memory access friendly algorithm is 

straight forward and it is adjusted as follows: 

Step 1: Do the ordinary first step start corner and stop 

and center and a temporary minimum point is found. 

Step 2: Set the search pattern center at the minimum 

point found in step 1 and set the starting point that closest 

to the end point in step 1 (center). Then go through the 

searching pattern. 

Step 3: Set the search pattern center at the minimum 

point found in step 2 and set the starting point that closest 

to the end point in step 2. Then go through the searching 

pattern. 

 
Fig.1. Full search 

 

 
 

Spt 1 2 3 4 5 6 7 8 9 10 Total 

cmem 16 4 4 4 4 4 4 4 4 2 

73 

Spt 11 12 13 14 15 16 17 18 19 20 

cmem 2 2 2 2 2 2 2 2 1 1 

Spt 21 22 23 24 25 
 

cmem 1 1 1 1 1 

 

Fig. 2  3SS searching with global minimum at ,  

Examples of 3SS searching with global minimum point at     ,  ��  − , −  are shown in Fig.2 and Fig.3.  

 

C. Four Step Search (4SS)  
4SS also uses square search patterns, but with four times 

and different search pattern size [11]. For a searching area ± , ± ,searching patterns for first three steps is ×  

and the final step is  × . The number of searching point 

is varying between 17 and 27. The memory friendly 

algorithm is adjusted number of searching point is varying 

between 17 and 27.The memory friendly algorithm is 

adjusted as the following: 
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Spt 1 2 3 4 5 6 7 8 9 10 Total 

cmem 16 4 4 4 4 4 4 4 4 4 

73 

Spt 11 12 13 14 15 16 17 18 19 20 

cmem 2 2 2 2 2 2 2 4 1 1 

Spt 21 22 23 24 25 
 

cmem 1 1 1 1 1 

Fig.3. 3SS searching with global minimum point at − , −  
 

Step 1:  Do the ordinary first step start corner and stop 

and center clockwise and a temporary minimum point is 

found. 

Step 2:  Set the search pattern center at the minimum 

point found in step 1. Then find the starting point and go 

through the unsearched points anti-clockwise. To find the 

starting point, find an unsearched point that the previous 

point is searched. 

Step 3: Set the search pattern center at the minimum 

point found in step 2. Then find the starting point and go 

through the unsearched points clockwise. To find the 

starting point, find an unsearched point that the previous 

point is searched. 

Step 4:  Set the search pattern center at the minimum 

point found in step 3 and set the starting point that closest 

to the end point in step 3. Then go through the searching 

pattern.  

Examples of 4SS searching with global minimum point at ,  ��  , −  are shown in the Fig. 4 and Fig. 5.  

D. Block Based Gradient Decent Search(BBGDS) 
BBGDS is a very simple algorithm that only uses a ×  square as the search pattern [12]. A MV will be 

decided if a searched point is found as minimum distortion 

among eight surrounding pints. The memory friendly 

algorithm is adjusted as the followings:  

Step 1: Do the first step ×  �  with the 

sequence shown in points 1-9 from Fig.6 and a temporary 

minimum point is found. If minimum point is , , end 

the process. 

 

 
 

Spt 1 2 3 4 5 6 7 8 9 10 Total 

cmem 16 2 2 2 2 2 2 2 2 1 

40 Spt 11 12 13 14 15 16 17 
 

cmem 1 1 1 1 1 1 1 

Fig.4 4SS searching with global minimum point at ,  

 

 
 

Spt 1 2 3 4 5 6 7 8 9 10 Total 

cmem 16 2 2 2 2 2 2 2 2 4 

65 

Spt 11 12 13 14 15 16 17 18 19 20 

cmem 2 2 2 2 4 2 2 2 3 1 

Spt 21 22 23 24 25 26 27 
 

cmem 1 1 1 1 1 1 1 

Fig.5. 4SS searching with global minimum point at , −  

Step 2: Search the same search pattern centered at the 

minimum point found in step 1 (e.g. point 10, 11, 12 in 

Fig.7), if the minimum point is the minimumamong all 

surrounding searched points, end the process. Otherwise, 

repeat step 2. 
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Examples of BBGDS searching with global minimum 

point at , , ,  ��  , −  are shown in Fig. 6, 

Fig.7 and Fig.8. 

 

E. Small Cross Diamond Search(SCDS)  
SCDS gives a very impressive solution for small motion 

video by using a Small Cross Search Pattern (SCSP) for 

the first step and the following steps remain the same as 

CDS [13,14].Since there is no one-way-trip for the SCSP, 

some memory access cost is wasted. The memory friendly 

algorithm is adjusted as the followings: 

Step 1:  Do the first step (SCSP) with the sequence shown 

in points 1-5 from Fig.9 and a temporary minimum point 

is found. If minimum point is , , end the process. 

Step 2: Search LCSP points and half diamond points at the 

direction of the minimum point found in step 1 (e.g. point 

10, 11 in Fig. 10), if the minimum point is surrounded by 4 

searched points, end the process. 

Step 3: Set the search pattern (LDSP) center at the 

minimum point found in step 2 (last step). Then find the 

starting point and go through the unsearched point reverse 

direction from last step (clockwise for the first time). To 

find the starting point, find an unsearched point that the 

previous point is searched. If minimum point is center go 

to Step 3; if not, move the center to the minimum point 

and repeat. 

Step 4:  Set the search pattern (SDSP) center at the 

minimum point found in step 3 and set the starting point 

that closest to the end point in step 3. Then go through the 

searching pattern. Examples of SCDS searching with 

global minimum point at , , �  − ,  are shown  in 

Fig.9 and Fig.10. 

Simulation has also been carried out on other standard 

search algorithms. But due to page limitation, all the 

algorithms and simulation results are not tabulated here. 

For example Diamond Search (DS) / Unrestricted Center 

Biased [15] use a diamond shape pattern instead of square 

shape pattern that 3SS and 4SS does and with a 

converging mechanism like 4SS. 

The major different from 3SS and 4SS is that it does not 

limit the total searching step. Although the theoretical 

maximum number of searching points is really high, the 

average number of searching point is even smaller than 

4SS. On the other hand CDS further improve the DS by 

changing the first step searching pattern. It uses a Large 

Cross Searching Pattern (LCSP) in  first step and 

introduced a new technique called first step stop that can 

substantially reduce the minimum number of searching 

points for small motion videos. Based on center biased 

property, most motion vectors will be within ± , ± , 
and especially for small motion videos, most of motion 

vectors will be zero motion. So, the number of searching 

points and memory access cost for minimum point at ,  is a critical factor, from the Table I we found that 

CDS and SCDS can use smallest number of searching 

point and the memory access cost. 

 
 

Spt 1 2 3 4 5 6 7 8 9 Total 

cmem 16 1 1 1 1 1 1 1 1 24 

Fig.6. BBGDS searching with global minimum point at ,  

 

 
 

Spt 1 2 3 4 5 6 7 8 9 10 Total 

cmem 16 1 1 1 1 1 1 1 1 3 

44 

Spt 11 12 13 14 15 16 17 18 19 20 

cmem 1 1 1 1 1 1 1 1 1 1 

Spt 21 22 23 24 25 26 27 
 

cmem 1 1 1 1 1 1 1 

Fig.7. BBGDS searching with global minimum point at ,  

 

IV. EXPERIMENTAL SETUP  AND SIMULATION 
 

The simulation was performed under the following 

condition: 

 Advanced prediction: on (i.e. [− , + ] pel search for ×  blocks around the best ×   of a fast ME 

algorithm 

 half-pel motion estimation: on 

 disabled: rate control, error resilience, SADCT 

 enabled: DC/AC-prediction 

 deblocking filter: rectangular VO: off, arbitrarily 

shaped VO: on 
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 combined motion/shape/texture coding, 

 h.264-quantization 

 
 

Spt 1 2 3 4 5 6 7 8 9 10 Total 

cmem 16 4 4 4 4 4 4 4 4 2 

60 

Spt 11 12 13 14 15 16 17 18 19 20 

cmem 1 1 1 1 2 1 1 1 1 2 

Spt 21 22 23 24 25 26 27 28 29 30 

cmem 1 1 1 1 2 1 1 1 1 2 

Spt 31 32 33 34 35 36 37 38 39 
 

cmem 1 1 1 1 2 1 1 1 1 

Fig.8. BBGDS searching with global minimum point at , −  
 

 
 

Spt 1 2 3 4 5 Total 

cmem 16 1 1 2 2 22 

Fig.9. SCDS searching with global minimum point at ,  

 

The simulation were carried out using low, medium and 

high motion details sequence video as Akiyo (CIF), 

Football (SIF) and Stefan (CIF) for observing the best 

performance of different motion estimation. The 

performances are tabulated in Table II.  

 
 

Spt 1 2 3 4 5 6 7 8 9 10 Total 

cmem 16 1 1 2 2 1 4 4 4 2 

72 

Spt 11 12 13 14 15 16 17 18 19 20 

cmem 2 2 4 2 2 2 2 2 2 2 

Spt 21 22 23 24 25 26 27 28 
 

cmem 2 2 2 2 1 2 2 2 

Fig.10. SCDS searching with global minimum point at − ,  
 

From the analysis it is found that the cost function of 

accessing data in memory can be saved from 68% to 80% 

and the number of search point can be saved from 87% to 

94%. So this approach can perform better where the 

memory savings is greatly needed. The experimental 

results also showed that the ranking of memory access cost 

for small motion video is � �  >   � >   � >  � >   �� >   �� >   �and for high motion video 

the ranking of memory access cost is � >  � > � � >  �� >  � >  �� >  � with lower 

computational complexity and similar quality is 

maintained. 

 

V. CONCLUSION 
 

The performance of commonly used ME algorithms are 

analyzed in details on the basis of memory saving and 

number of search point reduction. From the analysis it is 

found that it can significantly reduce the search point and 

memory access cost. We can also get ranking between the 

ME algorithms for different types of video content. From 

this ranking it can be concluded that if we can search using 

this order then we can obtained more better result for 

motion estimation and motion compensation. The design 

of hardware architecture will be studied for further 

enhancements in near future. 
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Table I: Comparison of Searching Point and Memory Acess Cost for Zero motion vector 

Search Algorithm Search Point (Spt) Cmem 

FS 225 240 

3SS 25 73 

4SS 17 40 

DS 14 41 

CDS 9 28 

BBGDS 9 24 

SCDS 5 22 

 

Table II; Performance Comparison of Different Motion Estimation Algorithms 

(A) For Akiyo (CIF) 

Akiyo 

(CIF) 
Cmem/frame MAE MSE PSNR 

MAE / 

pixel 
Spt 

Cmem 

saved 

Spt 

saved 

FS 86836.0 61392.87 3.94052 42.7795 0.60560 204.28 - - 

3SS 27475.7 61923.43 4.07492 42.6569 0.61083 23.21 68.359% 88.64% 

4SS 15300.4 61701.28 4.00621 42.7084 0.60864 15.85 82.380% 92.24% 

BBGDS 9391.5 61405.69 3.93750 42.7818 0.60572 8.55 89.185% 95.82% 

SCDS 8911.7 61497.18 3.98259 42.7417 0.60662 5.07 89.737% 97.52% 

 

(B) For Football (SIF) 

Football 

(SIF) 
Cmem/frame MAE MSE PSNR 

MAE / 

pixel 
Spt 

Cmem 

saved 

Spt 

saved 

FS 71626.0 635238.94 208.086 25.6195 7.51940 202.05 - - 

3SS 22914.1 659199.96 230.139 25.1866 7.80303 23.10 68.01% 88.57% 

4SS 14454.9 657698.57 227.648 25.2993 7.78526 17.63 79.82% 91.28% 

BBGDS 9609.7 664136.70 235.656 25.2057 7.86147 12.87 86.58% 93.63% 

SCDS 12423.0 662556.65 234.986 25.1908 7.84276 11.04 82.66% 94.53% 

 

(C) For Stefan  (CIF) 

Stefan 

(CIF) 
Cmem/frame MAE MSE PSNR 

MAE / 

pixel 
Spt 

Cmem 

saved 

Spt 

saved 

FS 86836.0 843357.3 303.407 24.6120 8.31910 204.28 - - 

3SS 27690.7 894472.87 341.119 24.1907 8.82332 23.30 68.11% 89.57% 

4SS 18431.3 951493.35 385.155 23.6722 9.38579 18.65 78.77% 91.88% 

BBGDS 12385.0 1003221.97 428.156 23.2255 9.89605 14.75 85.74% 93.81% 

SCDS 18023.8 973488.53 404.538 23.4690 9.60275 14.33 79.24% 94.01% 
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