

Copyright © 2015 IJECCE, All right reserved

739

International Journal of Electronics Communication and Computer Engineering

Volume 6, Issue 6, ISSN (Online): 2249–071X, ISSN (Print): 2278–4209

Efficient Search Points Reduction and Ranking of

Motion Estimation Algorithms in Video Coding

Md. Salah Uddin Yusuf*, Monira Islam, Mohiuddin Ahmad
Department of Electrical and Electronic Engineering

Khulna University of Engineering & Technology, Bangladesh

*Email: ymdsalahu2@gmail.com

Abstract – In this paper, the performance of commonly

used Motion Estimation (ME) algorithms are analyzed in

terms of search point reduction and ranking for hardware

implementation. Since number of searching point is not a

direct measure of hardware performance, we first define a

cost function of accessing data in memory. Then, we make

adjustments on the existing ME algorithms to minimize the

problem of memory access by reordering the sequence of

searching points, where the number of searching points and

MAE/PSNR remains the same as the original algorithms.

Finally, we calculate the memory cost improvement of each

algorithm. Using the present analysis we see that the cost

function of accessing data in memory can be saved from % �� �% and the number of search point can be saved

from % �� %. The experimental results showed that the

ranking based on memory access cost for small motion video

is � � > � > � > � > �� > �� > � and for

high motion video the ranking is memory access cost is � � > � > � � > �� > � > �� > � with lower

computational complexity and similar video quality is

maintained.

Keywords – H.264/AVC, Memory Access Cost, Motion

Compensation, Motion Estimation, Search Algorithm, Search

Point.

I. INTRODUCTION

Motion Estimation has proven to be effective to exploit

the temporal redundancy of video sequences and is

therefore a central part of the ISO/IEC MPEG-1, MPEG-2,

MPEG-4, CCITT H.261/ITU-TH.263 and H.264 video

compression encoder algorithms [1]. Motion estimation

[2] is used also for other applications than video encoding,

like image stabilization, motion segmentation, and image

analysis. However, the requirements for these applications

differ significantly for video encoding algorithms: Motion

vectors [3] have to reflect the real motion within the image

sequence; otherwise the algorithms will not give the

desired results. For video encoding the situation is

different. Motion vectors are used to compensate the

motion within the video sequence and only the remaining

signal (prediction error) has to be encoded and transmitted.

Therefore, the motion vectors have to be selected in order

to minimize the prediction error and the number of bits

required to code the prediction error. Motion estimation is

in most cases based on a search scheme which tries to find

the best matching position of a 16×16 macro block (MB)

of the current frame with a 16×16 blocks within a

predetermined or adaptive search range in the previous

frame. The matching position relative to the original

position is described as the motion vector which is (after

subtraction of the predictor and variable length coding)

transmitted in the bit stream to the video decoder.

Fast motion estimation (ME) algorithms [4] shown that

they can save a lot of searching points, but they all based

on an assumption that all data are accessed randomly, that

means they assume the whole memory block is refreshed

for each searching points and also the sequence of

searching points does not accounted under this

assumption. It is very different from the actual hardware

environments that direct implementation of these

algorithms may not be efficient.

There are two major factors for a ME algorithm affects

the hardware to be efficient. One is memory access

efficiency and another is pipeline efficiency [5]. For

memory access, while using a simple architecture that the

video block data is accessed row-by-row (or column-by-

column); if the block distortions are measured on

neighboring locations, it is not necessary to refresh the

whole block thus save the bandwidth of the data bus. For

instant, one step up, down, left, right movements are very

efficient since it only requires replacing single row or

column of memory instead of reloading the whole block.

We can see that the memory access will be efficient if we

keep the searching steps small. On the contrary, we should

prevent diagonal move or random jump since these moves

requires refreshing more data or almost the whole memory

block.

For pipeline efficiency, if a fixed searching sequence

can be defined, all video data can be queued up so the

block distortion measure can keep working thus the

hardware can be utilized. But for fast ME algorithms the

further searching path always depends on distortions of the

previous searched points [6]. For handling uncertain future

searching point, prediction can be used to pre-fetch the

data for next searching point. But when the prediction is

wrong the penalty might be serious since the pipeline need

to be cleared and data should be reloaded. If we want a

fast ME algorithm to be pipeline friendly we should keep

the number of branches to be as small as possible or make

the branches to be predictable. In this paper the standard

ME algorithm are analyzed in details and efficient

techniques are introduced for ordering them in different

kind of high and low motion video. The search point

reduction and calculation of memory access cost will be

helpful to minimized computational complexity and

motion estimation time for further hardware

implementation.

The rest of the paper organized with section II describes

the memory access cost function. Section III gives the

adjustment of memory access on different well-known

Copyright © 2015 IJECCE, All right reserved

740

International Journal of Electronics Communication and Computer Engineering

Volume 6, Issue 6, ISSN (Online): 2249–071X, ISSN (Print): 2278–4209

motion estimation ME, section IV describes experimental

set up, and conclusion is given in section V.

II. MEMONRY ACCESS COST FUNCTION

The definition of memory cost function is based on the

following assumptions for simple hardware architecture

[7]:

(i) Time of accessing row or column memory is the

same.

(ii) No carry-in from previous motion estimation.

(iii) Single port memory is used.

(iv) The video is on a 2D array in the memory.

The memory cost function is defined as:

1

2

1 1

1

(,) min (,) (,)

(,) while (,) min(,);
(,)

min (M,N) else

(,)

n

mem mem i i

i

L i j L i j

mem i j

L i j i

C x y M N c sp sp

d sp sp d sp sp M N
c sp sp

d sp sp x

j i j
x y y

where, Cmem is the memory cost function for motion

estimation at point (x,y), M, N is the macro block size,

usually × , ��� is the memory cost for moving

from searching point to , �1 is the City Block

distance between the searching point and , City

Block distance is used since it is the same as the number

of row/columns need to be replaced in the movement, � is

the number of searching points.

III. ADJUSTMENT FOR MEMORY ACCESS

FRIENDLY ON MOTION ESTIMATION

ALGORITHM

A. Full Search
First, it is the exhaustive search [8, 9] that scans all the

points in the searching area and it is trivial to form a

pattern for efficient memory access. For � ± , ± area,

there are 225 searching points and the memory cost will

be + = . An example of full searching is

shown in Fig.1 below.

B. Three Step Search (3SS)
3SS uses square search patterns three times with the

searching pattern size reduced by half for each step[10].

For a searching area ± , ± , searching patterns are ×, × �� × . The number of searching point is

fixed at 25. The memory access friendly algorithm is

straight forward and it is adjusted as follows:

Step 1: Do the ordinary first step start corner and stop

and center and a temporary minimum point is found.

Step 2: Set the search pattern center at the minimum

point found in step 1 and set the starting point that closest

to the end point in step 1 (center). Then go through the

searching pattern.

Step 3: Set the search pattern center at the minimum

point found in step 2 and set the starting point that closest

to the end point in step 2. Then go through the searching

pattern.

Fig.1. Full search

Spt 1 2 3 4 5 6 7 8 9 10 Total

cmem 16 4 4 4 4 4 4 4 4 2

73

Spt 11 12 13 14 15 16 17 18 19 20

cmem 2 2 2 2 2 2 2 2 1 1

Spt 21 22 23 24 25

cmem 1 1 1 1 1

Fig. 2 3SS searching with global minimum at ,

Examples of 3SS searching with global minimum point at , �� − , − are shown in Fig.2 and Fig.3.

C. Four Step Search (4SS)
4SS also uses square search patterns, but with four times

and different search pattern size [11]. For a searching area ± , ± ,searching patterns for first three steps is ×

and the final step is × . The number of searching point

is varying between 17 and 27. The memory friendly

algorithm is adjusted number of searching point is varying

between 17 and 27.The memory friendly algorithm is

adjusted as the following:

0 1 2 3 4 5 6 7-7 -6 -5 -4 -3 -2 -1
-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7-7 -6 -5 -4 -3 -2 -1
-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7-7 -6 -5 -4 -3 -2 -1

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

9

1 2 3

48

7 6 5

111213

14 10

15 16 17

242322

21

20 19 18

25

Copyright © 2015 IJECCE, All right reserved

741

International Journal of Electronics Communication and Computer Engineering

Volume 6, Issue 6, ISSN (Online): 2249–071X, ISSN (Print): 2278–4209

Spt 1 2 3 4 5 6 7 8 9 10 Total

cmem 16 4 4 4 4 4 4 4 4 4

73

Spt 11 12 13 14 15 16 17 18 19 20

cmem 2 2 2 2 2 2 2 4 1 1

Spt 21 22 23 24 25

cmem 1 1 1 1 1

Fig.3. 3SS searching with global minimum point at − , −

Step 1: Do the ordinary first step start corner and stop

and center clockwise and a temporary minimum point is

found.

Step 2: Set the search pattern center at the minimum

point found in step 1. Then find the starting point and go

through the unsearched points anti-clockwise. To find the

starting point, find an unsearched point that the previous

point is searched.

Step 3: Set the search pattern center at the minimum

point found in step 2. Then find the starting point and go

through the unsearched points clockwise. To find the

starting point, find an unsearched point that the previous

point is searched.

Step 4: Set the search pattern center at the minimum

point found in step 3 and set the starting point that closest

to the end point in step 3. Then go through the searching

pattern.

Examples of 4SS searching with global minimum point at , �� , − are shown in the Fig. 4 and Fig. 5.

D. Block Based Gradient Decent Search(BBGDS)
BBGDS is a very simple algorithm that only uses a × square as the search pattern [12]. A MV will be

decided if a searched point is found as minimum distortion

among eight surrounding pints. The memory friendly

algorithm is adjusted as the followings:

Step 1: Do the first step × � with the

sequence shown in points 1-9 from Fig.6 and a temporary

minimum point is found. If minimum point is , , end

the process.

Spt 1 2 3 4 5 6 7 8 9 10 Total

cmem 16 2 2 2 2 2 2 2 2 1

40 Spt 11 12 13 14 15 16 17

cmem 1 1 1 1 1 1 1

Fig.4 4SS searching with global minimum point at ,

Spt 1 2 3 4 5 6 7 8 9 10 Total

cmem 16 2 2 2 2 2 2 2 2 4

65

Spt 11 12 13 14 15 16 17 18 19 20

cmem 2 2 2 2 4 2 2 2 3 1

Spt 21 22 23 24 25 26 27

cmem 1 1 1 1 1 1 1

Fig.5. 4SS searching with global minimum point at , −

Step 2: Search the same search pattern centered at the

minimum point found in step 1 (e.g. point 10, 11, 12 in

Fig.7), if the minimum point is the minimumamong all

surrounding searched points, end the process. Otherwise,

repeat step 2.

0 1 2 3 4 5 6 7-7 -6 -5 -4 -3 -2 -1

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

9

1 2 3

48

7 6 5

10

14 13 12

15 11

16 17

18

22 23 24

25

19

21

20

0 1 2 3 4 5 6 7-7 -6 -5 -4 -3 -2 -1

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

9

3

4

21

8

7 6 5

13 12 11

14 10

15 16 17

0 1 2 3 4 5 6 7-7 -6 -5 -4 -3 -2 -1

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

9

3

4

21

8

7 6 5

14 13 12

11

10

15 16 17

18

19

232425

26 22

27 20 21

Copyright © 2015 IJECCE, All right reserved

742

International Journal of Electronics Communication and Computer Engineering

Volume 6, Issue 6, ISSN (Online): 2249–071X, ISSN (Print): 2278–4209

Examples of BBGDS searching with global minimum

point at , , , �� , − are shown in Fig. 6,

Fig.7 and Fig.8.

E. Small Cross Diamond Search(SCDS)
SCDS gives a very impressive solution for small motion

video by using a Small Cross Search Pattern (SCSP) for

the first step and the following steps remain the same as

CDS [13,14].Since there is no one-way-trip for the SCSP,

some memory access cost is wasted. The memory friendly

algorithm is adjusted as the followings:

Step 1: Do the first step (SCSP) with the sequence shown

in points 1-5 from Fig.9 and a temporary minimum point

is found. If minimum point is , , end the process.

Step 2: Search LCSP points and half diamond points at the

direction of the minimum point found in step 1 (e.g. point

10, 11 in Fig. 10), if the minimum point is surrounded by 4

searched points, end the process.

Step 3: Set the search pattern (LDSP) center at the

minimum point found in step 2 (last step). Then find the

starting point and go through the unsearched point reverse

direction from last step (clockwise for the first time). To

find the starting point, find an unsearched point that the

previous point is searched. If minimum point is center go

to Step 3; if not, move the center to the minimum point

and repeat.

Step 4: Set the search pattern (SDSP) center at the

minimum point found in step 3 and set the starting point

that closest to the end point in step 3. Then go through the

searching pattern. Examples of SCDS searching with

global minimum point at , , � − , are shown in

Fig.9 and Fig.10.

Simulation has also been carried out on other standard

search algorithms. But due to page limitation, all the

algorithms and simulation results are not tabulated here.

For example Diamond Search (DS) / Unrestricted Center

Biased [15] use a diamond shape pattern instead of square

shape pattern that 3SS and 4SS does and with a

converging mechanism like 4SS.

The major different from 3SS and 4SS is that it does not

limit the total searching step. Although the theoretical

maximum number of searching points is really high, the

average number of searching point is even smaller than

4SS. On the other hand CDS further improve the DS by

changing the first step searching pattern. It uses a Large

Cross Searching Pattern (LCSP) in first step and

introduced a new technique called first step stop that can

substantially reduce the minimum number of searching

points for small motion videos. Based on center biased

property, most motion vectors will be within ± , ± ,
and especially for small motion videos, most of motion

vectors will be zero motion. So, the number of searching

points and memory access cost for minimum point at , is a critical factor, from the Table I we found that

CDS and SCDS can use smallest number of searching

point and the memory access cost.

Spt 1 2 3 4 5 6 7 8 9 Total

cmem 16 1 1 1 1 1 1 1 1 24

Fig.6. BBGDS searching with global minimum point at ,

Spt 1 2 3 4 5 6 7 8 9 10 Total

cmem 16 1 1 1 1 1 1 1 1 3

44

Spt 11 12 13 14 15 16 17 18 19 20

cmem 1 1 1 1 1 1 1 1 1 1

Spt 21 22 23 24 25 26 27

cmem 1 1 1 1 1 1 1

Fig.7. BBGDS searching with global minimum point at ,

IV. EXPERIMENTAL SETUP AND SIMULATION

The simulation was performed under the following

condition:

 Advanced prediction: on (i.e. [− , +] pel search for × blocks around the best × of a fast ME

algorithm

 half-pel motion estimation: on

 disabled: rate control, error resilience, SADCT

 enabled: DC/AC-prediction

 deblocking filter: rectangular VO: off, arbitrarily

shaped VO: on

0 1 2 3 4 5 6 7-7 -6 -5 -4 -3 -2 -1

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

9

4 5

6

3

2

1 8 7

0 1 2 3 4 5 6 7-7 -6 -5 -4 -3 -2 -1

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

9

4 5

6

3

2

1 8 7 10

11

12

15

14

13

16

17

18

21

20

19

22

23

24

27

26

25

Copyright © 2015 IJECCE, All right reserved

743

International Journal of Electronics Communication and Computer Engineering

Volume 6, Issue 6, ISSN (Online): 2249–071X, ISSN (Print): 2278–4209

 combined motion/shape/texture coding,

 h.264-quantization

Spt 1 2 3 4 5 6 7 8 9 10 Total

cmem 16 4 4 4 4 4 4 4 4 2

60

Spt 11 12 13 14 15 16 17 18 19 20

cmem 1 1 1 1 2 1 1 1 1 2

Spt 21 22 23 24 25 26 27 28 29 30

cmem 1 1 1 1 2 1 1 1 1 2

Spt 31 32 33 34 35 36 37 38 39

cmem 1 1 1 1 2 1 1 1 1

Fig.8. BBGDS searching with global minimum point at , −

Spt 1 2 3 4 5 Total

cmem 16 1 1 2 2 22

Fig.9. SCDS searching with global minimum point at ,

The simulation were carried out using low, medium and

high motion details sequence video as Akiyo (CIF),

Football (SIF) and Stefan (CIF) for observing the best

performance of different motion estimation. The

performances are tabulated in Table II.

Spt 1 2 3 4 5 6 7 8 9 10 Total

cmem 16 1 1 2 2 1 4 4 4 2

72

Spt 11 12 13 14 15 16 17 18 19 20

cmem 2 2 4 2 2 2 2 2 2 2

Spt 21 22 23 24 25 26 27 28

cmem 2 2 2 2 1 2 2 2

Fig.10. SCDS searching with global minimum point at − ,

From the analysis it is found that the cost function of

accessing data in memory can be saved from 68% to 80%

and the number of search point can be saved from 87% to

94%. So this approach can perform better where the

memory savings is greatly needed. The experimental

results also showed that the ranking of memory access cost

for small motion video is � � > � > � > � > �� > �� > �and for high motion video

the ranking of memory access cost is � > � > � � > �� > � > �� > � with lower

computational complexity and similar quality is

maintained.

V. CONCLUSION

The performance of commonly used ME algorithms are

analyzed in details on the basis of memory saving and

number of search point reduction. From the analysis it is

found that it can significantly reduce the search point and

memory access cost. We can also get ranking between the

ME algorithms for different types of video content. From

this ranking it can be concluded that if we can search using

this order then we can obtained more better result for

motion estimation and motion compensation. The design

of hardware architecture will be studied for further

enhancements in near future.

ACKNOWLEDGEMENT

This research work is partially funded from the

Research Project’ 2015-2016 approved by CASR of

Khulna University of Engineering & Technology (KUET),

Khulna, Khulna-9203, Bangladesh.

0 1 2 3 4 5 6 7-7 -6 -5 -4 -3 -2 -1

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

9

4 5

6

3

2

1 8 7

10 11 12

13

14

19 18 17

16

15

20 21 22

23

24

29 28 27

26

25

30 31 32

33

34

39 38 37

36

35

0 1 2 3 4 5 6 7-7 -6 -5 -4 -3 -2 -1

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

2

3

4

5

1

0 1 2 3 4 5 6 7-7 -6 -5 -4 -3 -2 -1

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

2

3

4

5

1

6

7

8

9

10 11

16

14

12

15 13

18

17

1924

23

22

21

2025

26

27

28

Copyright © 2015 IJECCE, All right reserved

744

International Journal of Electronics Communication and Computer Engineering

Volume 6, Issue 6, ISSN (Online): 2249–071X, ISSN (Print): 2278–4209

Table I: Comparison of Searching Point and Memory Acess Cost for Zero motion vector

Search Algorithm Search Point (Spt) Cmem

FS 225 240

3SS 25 73

4SS 17 40

DS 14 41

CDS 9 28

BBGDS 9 24

SCDS 5 22

Table II; Performance Comparison of Different Motion Estimation Algorithms

(A) For Akiyo (CIF)

Akiyo

(CIF)
Cmem/frame MAE MSE PSNR

MAE /

pixel
Spt

Cmem

saved

Spt

saved

FS 86836.0 61392.87 3.94052 42.7795 0.60560 204.28 - -

3SS 27475.7 61923.43 4.07492 42.6569 0.61083 23.21 68.359% 88.64%

4SS 15300.4 61701.28 4.00621 42.7084 0.60864 15.85 82.380% 92.24%

BBGDS 9391.5 61405.69 3.93750 42.7818 0.60572 8.55 89.185% 95.82%

SCDS 8911.7 61497.18 3.98259 42.7417 0.60662 5.07 89.737% 97.52%

(B) For Football (SIF)

Football

(SIF)
Cmem/frame MAE MSE PSNR

MAE /

pixel
Spt

Cmem

saved

Spt

saved

FS 71626.0 635238.94 208.086 25.6195 7.51940 202.05 - -

3SS 22914.1 659199.96 230.139 25.1866 7.80303 23.10 68.01% 88.57%

4SS 14454.9 657698.57 227.648 25.2993 7.78526 17.63 79.82% 91.28%

BBGDS 9609.7 664136.70 235.656 25.2057 7.86147 12.87 86.58% 93.63%

SCDS 12423.0 662556.65 234.986 25.1908 7.84276 11.04 82.66% 94.53%

(C) For Stefan (CIF)

Stefan

(CIF)
Cmem/frame MAE MSE PSNR

MAE /

pixel
Spt

Cmem

saved

Spt

saved

FS 86836.0 843357.3 303.407 24.6120 8.31910 204.28 - -

3SS 27690.7 894472.87 341.119 24.1907 8.82332 23.30 68.11% 89.57%

4SS 18431.3 951493.35 385.155 23.6722 9.38579 18.65 78.77% 91.88%

BBGDS 12385.0 1003221.97 428.156 23.2255 9.89605 14.75 85.74% 93.81%

SCDS 18023.8 973488.53 404.538 23.4690 9.60275 14.33 79.24% 94.01%

REFERENCES

[1] I.Richardson, H.264 and MPEG-4 Video Comprsion- Video

Coding for Next Generation Muledia. John Wiley&Sons,

Chichester, 2003.

[2] R. Srinivasan and K. R. Rao, “Predictive coding based on
efficient motion estimation,” IEEE Trans. Commun., vol. 33, no.

8, pp. 888–896, Aug. 1985.

[3] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro,

“Motion compensated interframe coding for video
conferencing,” in Proc. Nat.Telecommun. Conf., New Orleans,

LA, Dec. 1981, pp. G5.3.1-G5.3.5.

[4] I. Ahmad, W. Zheng, J. Luo, and M. Liou, “A fast adaptive
motion estimation algorithm,” IEEE Trans. Circuits Syst. Video

Technol., vol. 16, no. 3, pp. 420–438, Mar. 2006.

[5] J. Kim and T. Park. A novel VLSI architecture for fullSearch

variable block-Size motion estimation. IEEE Transactions on

Consumer Electronics, 55(2): 728-733, 2009.

[6] J.C. Tuan, T.S. Chang, and C.W.Jen, “On the data reuse and
memory bandwidth analysis for full-search block-matching

VLSI architecture,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 12, pp. 61–72, Jan. 2002.

[7] S.B. Lopes, I. S. Silva and L.V Agostini, “An efficient memory

hierarchy for full search motion estimation on high definition

digital videos,” Proceedings of the 24th symposium on
Integrated circuits and systems design,pp.131-136, August

2011.

[8] S.-S. Lin, P.-C. Tseng, and L.-G. Chen, “Low- power parallel

tree architecture for full search block-matching motion

estimation,” in Proc.IEEE International Symposium on Circuits

and Systems, pp. 313–316, May 2004.

[9] M. Mohammadzadeh, M. Eshghi, M. M. Azadfar,

“Parameterizable implementation of full search block matching

algorithm using FPGA for real-time applications,” ICCDCS
2004: Fifth International Caracas Conference on Devices,

Circuits and Systems, pp. 200–203, 2004.

[10] R. Li, B. Zeng, and M. L. Lio, “A new three-step search

algorithm for block motion estimation,” IEEE Trans. Circuits

Syst. Video Technol.vol. 4, no. 4, pp. 438–443, Aug. 1994.

[11] L. M. Po and W. C. Ma, “A novel four-step search algorithm for

fast block motion estimation,” IEEE Trans. Circuits Syst. Video

Technol., vol. 6, no. 3, pp. 313–317, Jun. 1996.

[12] L. M. Po and W. C. Ma, “A novel four-step search algorithm for

fast block motion estimation,” IEEE Trans. Circuits Syst. Video

Technol., vol. 6, no. 3, pp. 313–317, Jun. 1996.

[13] L. K. Liu and E. Feig, “A block-based gradient descent search

algorithm for block motion estimation in video coding,” IEEE

Trans. Circuits Syst.Video Technol., vol. 6, no. 4, pp. 419–422,

Aug. 1996.

Copyright © 2015 IJECCE, All right reserved

745

International Journal of Electronics Communication and Computer Engineering

Volume 6, Issue 6, ISSN (Online): 2249–071X, ISSN (Print): 2278–4209

[14] C. H. Cheung and L. M. Po, “A novel cross-diamond search

algorithm for fast block motion estimation,” IEEE Trans.

Circuits Syst. Video Technol., vol. 12, no. 12, pp. 1168–177,

Dec. 2002.

[15] C. H. Cheung and L. M. Po, “Novel cross-diamond-hexagonal

search algorithms for fast block motion estimation,” IEEE Trans.

Multimedia, vol. 7, no. 1, pp. 16–22, Feb. 2005.

[16] J. Y. Tham, S. Ranganath, M. Ranganath, and A. A. Kassim, “A
novel unrestricted center-biased diamond search algorithm for

block motion estimation,” IEEE Trans. Circuits Syst. Video

Technol., vol. 8, no. 4, pp. 369–377, Aug. 1998.

[17] Chun-Ho Cheung, Lai-Man PO, “A novel cross-diamond search

algorithm for fast block motion estimation,” Circuits and

Systems for Video Technology, IEEE Transactions, Vol.12,

No.12, pp.1168 – 1177, Dec 2002.

[18] H.264/AVC SOFTWARE: http://iphome.hhi.de/suehring/~.

AUTHOR’S PROFILE

Md. Salah Uddin Yusuf
received his B.Sc. and M. Sc. Engineering degree in

Electrical and Electronic Engineering from Khulna

University of Engineering & Technology (KUET),

Bangladesh in 1999 and 2005, respectively. He is

currently pursuing his PhD in the same department

also serving as Associate Professor. His research

interest includes signal and image processing, video compression and

multimedia communication.

Monira Islam
received her B.Sc. Engineering degree in Electrical

and Electronic Engineering from Khulna University

of Engineering & Technology (KUET), Khulna-

9203, Bangladesh in 2013. She is currently pursuing

her M.Sc. engineering in the same department and

also serving as Lecturer in the same department. Her

research interest includes signal processing and

multimedia communication.

Mohiuddin Ahmad
received his BS degree with Honors Grade in

Electrical and Electronic Engineering (EEE) from

Chittagong University of Engineering and

Technology (CUET), Bangladesh and his MS degree

in Electronics and Information Science (EIS) from

Kyoto Institute of Technology of Japan in 1994 and

2001, respectively. He received his PhD degree in Computer Science and

Engineering (CSE) from Korea University, Republic of Korea, in 2008.

From November 1994 to August 1995, he served as a part-time Lecturer

in the Department of Electrical and Electronic Engineering at CUET,

Bangladesh. From August 1995 to October 1998, he served as a Lecturer

in the Department of Electrical and Electronic Engineering at Khulna

University of Engineering & Technology (KUET), Bangladesh. In June

2001, he joined the same Department as an Assistant Professor. In May

2009, he joined the same Department as an Associate Professor and now

he is a full Professor. Moreover, Dr. Ahmad had been serving as the

Head of the Department of Biomedical Engineering from October 2009

to September 2012. Prof. Ahmad served as the Head of the Department

of Electrical and Electronic Engineering from September 2012 to August

2014. His research interests include Biomedical Signal and Image

Processing, Computer Vision and Pattern Recognition, Human Motion

Analysis, and Energy Conversion. Technology (KUET), Bangladesh. In

June 2001, he joined the same Department as an Assistant Professor. In

May 2009, he joined the same Department as an Associate Professor and

now he is a full Professor. Moreover, Dr. Ahmad had been serving as the

Head of the Department of Biomedical Engineering from October 2009

to September 2012. Prof. Ahmad served as the Head of the Department

of Electrical and Electronic Engineering from September 2012 to August

2014. His research interests include Biomedical Signal and Image

Processing, Computer Vision and Pattern Recognition, Human Motion

Analysis, and Energy Conversion.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=76
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=76
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=26389

	I. Introduction
	II. Memonry Access Cost Function
	III. Adjustment for Memory Access Friendly on Motion Estimation Algorithm
	A. Full Search
	B. Three Step Search (3SS)
	C. Four Step Search (4SS)
	D. Block Based Gradient Decent Search(BBGDS)
	E. Small Cross Diamond Search(SCDS)

	IV. Experimental Setup And Simulation
	V. Conclusion
	Acknowledgement
	References

	Author’s Profile

