

Copyright © 2014 IJECCE, All right reserved

1110

International Journal of Electronics Communication and Computer Engineering

Volume 5, Issue 5, ISSN (Online): 2249–071X, ISSN (Print): 2278–4209

Designing a 64-Point FFT/IFFT Processor for

Implementation of OFDM in High Speed WLAN

Applications

Rouzbeh Jahani
Department of Computer

Engineering, Shahindezh

Branch, Islamic Azad

University, Shahindezh, Iran

Alireza Gharegozi
Department of Computer

Engineering, Shahindezh

Branch, Islamic Azad

University, Shahindezh, Iran

Mohsen Tamaddon
Department of Computer

Engineering, Shahindezh

Branch, Islamic Azad

University, Shahindezh, Iran

Heidar Ali Shayanfar
Department of Electrical

Engineering, South Tehran

Branch, Islamic Azad

University, Tehran, Iran

Abstract – In this report a methodology is presented for

design of a special 32-bit 64-point processor to implement the

OFDM in local wireless networks with IEEE standard

800.11a. In this FFT/IFFT, instead of direct approach, the

shifter and adder is used for multiplier; thereby, it yields a

major reduction in power area. In this processor a memory

bank with the number of elements N=algorithm' base is

considered. On this basis, the callback for digits is performed

just in one stage as well as the access time to the memory is

reduced.

Keywords – Fast Furrier Transform, Imaginary Multiply,

Local Wireless Networks, Memory Bank, OFDM.

I. INTRODUCTION

One part of sensitive communication systems is the

method of data transmitting. The existing methods get a

compromise between speed and the reliability. OFDM

(Orthogonal Frequency Division Multiplexing) technique

simultaneously brings about a very reliable and fast data

transmission while the implementation is quiet difficult.

OFDM takes data transmission through some orthogonal

frequencies by which method the following advantages are

gained:

1. The efficient use of frequency bandwidth

2. Robustness against fading provoked by propagation

along different paths

3. Relative convenient balancing because it takes place in

frequency domain

4. ISI (inter symbol interference) reduction due to use of

guards between samples

Figure 1 depicts the full structure of a modem for IEEE

802.11 standard. In this standard main functions and

architecture of a high rate communication system are

determined. Because of being a mobile system it should

consume a little power. The use of multi-objective

processor and various programs for each part results in

more power consumption. Therefore, one can implement

special hardware for major blocks of base band [1].

Most of performance in base-band transmitter/receiver

systems working based on OFDM technique, refer to IFFT

of transmitter and Viterbi decoder in receiver[1].

Therefore, the IFFT/FFT block is of particular significance

in such systems and should be independently designed in

terms of hardware. This report attends to how this block is

designed in 64-point format. The FFT/IFFT processor

block is widely used in high rate local wireless networks.

Fig.1. Physical layer of modem for 802.11 standard

II. FFT ALGORITHM

Fast furrier transform (FFT) is one of optimal

algorithms for DFT calculation and in most occasions its

results are the same as DFT's (with the exception of

rounding error). The operation number needed for DFT is

N
2
and it could be greatly reduced using FFT methods [2].

DFT is calculated by

1

, 0,1,..., 1
0

N nkX k x n W k N
Nn

 (1)

Where
Ni

N eW /2
 (2)

N is a power of 2 such that N=2
m
, and m is a natural

number. This relationship can be divided to two

relationships with length N/2 in a way that one of them

involves odd members of x and another one utterly

involves even members of x [2].

2 1

0 0even odd

N N
nk nk

N N

n n

X k x n W x n W

 (3)

Substituting n with 2m yields [2]:

/2 2 /2 1
2 12

0 0

/2 2 /2 1
2 2

0 0

2 2 1

2 2 1

N N
m kmk

N N

m m

N Nmk mk
k

N N N

m m

X k x m W x m W

x m W x m W W

(4)

WN
2
 can be simplified to

2/

2//2

2/22

N

Ni

Ni

N

We

eW

 (5)

Copyright © 2014 IJECCE, All right reserved

1111

International Journal of Electronics Communication and Computer Engineering

Volume 5, Issue 5, ISSN (Online): 2249–071X, ISSN (Print): 2278–4209

So for DFT we have

/2 1 /2 1

/2 /2

0 0

,
N N

mk k mk

even N N odd N

m m

X k x m W W x m W

 0,1,..., 1k N (6)

Hence the DFT with N point changes into the DFT with

N/2 [2].

 / 2 /2, . ,k

N even N N oddX k DFT x m k W DFT x m k (7)

Fig.2 shows how the FFT is calculated. Until now there

was no simplification in operations (each element of X

twice encounters N/2 operations e.g. for all X, the order o

operations is N
2
). The periodic form of W is of

significance such that it can be shown that [2]:

x

N

ix

N

N

N

x

N

Nx

N

WeW

WWW

2/2/

 (8)

In this way, one just need the half of W multiply

operation. Therefore, fig. 2 will change into fig.3.

This is not the end. As mentioned, N is powered number

by 2 or more so we can decompose both odd and even

parts of Eq. 7 into the odd and even factors so that each

part has only two members. In fig.8 this strategy is done

for 8-point DFT. This decomposition is possible by

log2(N)-1 times and generates log2(N) resolution for DFT

calculation. The resolution m has the number of

N/(2
m+1

).2
m
=N/2 imaginary multiply. The final resolution

becomes a 2-point DFT which can be easily calculated [2].

since each of N/2 stages of 2-point DFT involve a add and

subtraction and in each resolution there is N/2 multiply

function in WN and there is log2N resolution, the total

necessary operation number would be Nlog2N [2].

Therefore using FFT algorithm, the calculation size for

high-point DFT is considerably decreased.

It can be noticed in calculation that it is possible to

decrease the total constants W such that all Ws convert to

the equivalent WN. For example in fig. 3 it can be placed

W4
0
= W2

0
= W8

0
. Fig. 5 is gained with exchanging the

equivalent coefficients. Herein each resolution is

decomposed to two smaller DFT; therefore, the FFT

corresponds to the FFT group known as binary FFT. Also,

because of time samples are recurrently divided into odd

and even parts, it is known as decimation in time (DIT)

[2]. If X(k) in each resolution becomes decomposed, an

up duality called decimation in frequency (DIF) is

gained[2].

Fig.2. 8-point DFT graph for calculation of two DFT with

N/2 points. Arrows indicate the multiply operation in W8
k

and numbers on the arrows denote k[2].

Fig.3. The modified 8-point DFT with periodic W for

calculation of DFT with N/2 points. Arrows indicate

multiply in W.

Fig.4.The completely decomposed 8-point DFT graph.

Fig.5. The completely decomposed 8-point DFT graph

with equivalent W [2].

As mentioned before, our desired FFT is a 64-point one

in base of 8 so considering the explanatory algorithm it

can be written [1]:

7 7

64 8 8

0 0

8 8sl sm lt

l l

X s t W x l m W W

 (9)

The graph of 64-point FFT in the base of 8 is depicted in

terms of DIF in fig. 6.

W
1

W
2

W
5

W
4

W
3

W
0

W
6

W
7

W
8

W
9

W
10

W
11

W
12

W
13

W
14

W
15

W
16

W
17

W
18

W
19

W
20

W
21

W
22

W
23

W
24

W
25

W
26

W
27

W
28

W
29

W
30

W
31

W
0

W
2

W
4

W
6

W
8

W
10

W
12

W
14

W
16

W
18

W
20

W
22

W
24

W
26

W
28

W
30

W
0

W
2

W
4

W
6

W
8

W
10

W
12

W
14

W
16

W
18

W
20

W
22

W
24

W
26

W
28

W
30

W
0

W
4

W
8

W
12

W
16

W
20

W
24

W
28

W
0

W
4

W
8

W
12

W
16

W
20

W
24

W
28

W
0

W
4

W
8

W
12

W
16

W
20

W
24

W
28

W
0

W
4

W
8

W
12

W
16

W
20

W
24

W
28

W
0

W
8

W
16

W
24

W
0

W
8

W
16

W
24

W
0

W
8

W
16

W
24

W
0

W
8

W
16

W
24

W
0

W
8

W
16

W
24

W
0

W
8

W
16

W
24

W
0

W
8

W
16

W
24

W
0

W
8

W
16

W
24

W
16

W
0

W
16

W
0

W
16

W
0

W
16

W
0

W
16

W
0

W
16

W
0

W
16

W
0

W
16

W
0

W
16

W
0

W
16

W
0

W
16

W
0

W
16

W
0

W
16

W
0

W
16

W
0

W
16

W
0

W
16

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

W
0

x[05]

x[10]

x[15]

x[20]

x[25]

x[30]

x[00]

x[16]

x[11]

x[12]

x[13]

x[14]

x[01]

x[02]

x[03]

x[04]

x[06]

x[07]

x[08]

x[09]

x[31]

x[17]

x[18]

x[19]

x[21]

x[22]

x[23]

x[24]

x[26]

x[27]

x[28]

x[29]

x[35]

x[40]

x[45]

x[50]

x[55]

x[60]

x[62]

x[63]

x[61]

x[33]

x[34]

x[46]

x[47]

x[48]

x[49]

x[36]

x[37]

x[38]

x[39]

x[41]

x[42]

x[43]

x[44]

x[51]

x[52]

x[53]

x[54]

x[56]

x[57]

x[58]

x[59]

x[32]

X[49]

X[05]

X[45]

X[19]

X[59]

X[15]

X[31]

X[63]

X[47]

X[33]

X[17]

X[29]

X[61]

X[03]

X[35]

X[09]

X[41]

X[25]

X[57]

X[37]

X[21]

X[53]

X[13]

X[51]

X[11]

X[43]

X[27]

X[07]

X[39]

X[23]

X[55]

X[40]

X[20]

X[60]

X[10]

X[38]

X[30]

X[01]

X[00]

X[02]

X[52]

X[12]

X[44]

X[28]

X[32]

X[16]

X[48]

X[08]

X[24]

X[56]

X[04]

X[36]

X[62]

X[34]

X[18]

X[50]

X[42]

X[26]

X[58]

X[06]

X[22]

X[54]

X[14]

X[46]

 N =0:7

Fig.6. The graph of 64-point FFT in base 8

Copyright © 2014 IJECCE, All right reserved

1112

International Journal of Electronics Communication and Computer Engineering

Volume 5, Issue 5, ISSN (Online): 2249–071X, ISSN (Print): 2278–4209

III. ARCHITECTURE

The objective 64-point FFT/IFFT is designed

considering the algorithm of base 8. The data path in FFT

processor is shown in fig. 7. First, data is called from

memory and finally output is written on. The bright lines

indicate the control signal. The lines which are signed by

D are the delayed version of original signal. Each D

number denotes a unit of delay.

This FFT works in 4-level pipeline and when the

calculation in 3 levels of FFT is over, the data are recorded

on the memory. The data is called from and written on two

distinct register banks (Bank 1 and 2). These two register

banks make the implementation and calculation through

the pipeline convenient [3]. The FFT/IFFT processor

consists of 3 modules:

- Butterfly processor

- The address generator unit

- Control unit or MCSM (micro-coded state machine)

The butterfly processor is a conventional mathematical

block for FFT calculation by which processor graphs can

be easily drew and read. In fig. 8 a butterfly is shown.

From fig. 8 the operations for calculation of butterfly'

output is

r

Nmmm

mmm

WBAB

BAA

)(11

11

 (10)

N

jr
W

r

N

2
exp

 (11)

Fig.7. Data path in FFT processor [3].

Xm-1[p]

WN
r

Xm-1[q] Xm[q]

Xm[p]

-1

Fig.8. Butterfly cell

In fact the butterfly processor task is the calculation of

imaginary operations in FFT algorithm. previous

expressions suggest that this processor needs an imaginary

multiplier, but the imaginary multiplier has not been

implemented instead the multiply operation is done just by

adders and registers. This multiply method is known as

conventional signed digits (CSD) multiply [3]. However,

this multiply operation ordinary for 64-point FFT with 8

base, is performed between intermediate (middle) results

and the 49 intermediate (middle) non-simple constants

from (Eq. 9, ,
64

, 1, 2,...,7slW s l).

The multiply operation of all intermediate constants can

done with the 9 groups of constant and exchanging the real

and imaginary parts as well as with selecting the

appropriate sign. Since the first group of constants, e.g. (1,

0), is a simple value, just 8 groups of non-simple

intermediate constants remain. Therefore, it needs to save

just 8 groups (instead of 49 groups, as usual) [1].

 In fig. 9 the data path in butterfly processor is

presented. The multiply operation is performed by two

CSD blocks which these blocks are controlled in

multiplexing format. Therefore, butterfly processor can do

the calculations in two levels in pipeline way.

In this way, the objective code is written in HDL

language for butterfly. Since this code cloud be

synthesized, using Simplicity Simplify program we could

convert it to the module on gate surface (see fig.10).

Fig.9. The data path in butterfly processor [3].

After this act, one can easily draw the circuit layout

using programs such as Silicon foundry. The schematic of

fig. 11 shows the gate surface of the butterfly processor. It

is shown that the butterfly consists of two SCMs. The

SCM is the multiplier with the 32-bit constant

discriminator whose schematic is brought in fig. 11 using

Simplicity program.

The address generator unit _ Using AGU, it is possible

to control the address bus which goes to memory. The FFT

processor is connected to 8 two-port memory banks and

can simultaneously write on and written from the memory.

This memory bank structure helps all information

associated with the butterfly to be called back from

memory [1]. If there was just on bank instead of 8 banks,

the data preparation for the processor of base 8 would

prolonged the more seven cycles.

Copyright © 2014 IJECCE, All right reserved

1113

International Journal of Electronics Communication and Computer Engineering

Volume 5, Issue 5, ISSN (Online): 2249–071X, ISSN (Print): 2278–4209

Fig.10. The gate surface circuit for butterfly designed by

Synplify program

Fig.11. The gate surface circuit for multiplier with 32-bit

constant discriminator designed by Simplify program

By the way, it is important to note that cycle duration

for write and read is much longer than other cycles in the

processor. Therefore, the presence of memory banks

which are designed in FFT base, can considerable improve

the performance time of the processor. Nevertheless, this

strategy results in more occupation of silicon surface. The

memory bank circuit on gate surface is depicted by

Synplify program (fig. 12). Herein, each memory bank

unit has 32-bit long. The addressing should be in an

occasion in which the simultaneous write and read actions

never take place. The memory has 8 address buses for read

and 8 address buses for write; in other words each bank

independently has address bus for write and read. In this

way the address generator unit which is performed by a

counter, has been made very simple and. Table 1 presents

the allocation method of the memory addresses.

Control unit (micro coded state machine) _This unit

saves all of the necessary control signals for the FFT

processor operation. This unit uses a clock in order to

generate the control state signals. The total number of

generated states is 196 which can be generated via a

counter [3]. Two signals of this unit make are supposed to

connect with out of the FFT processor; the en_fft and

done_fft. The en_ff signal clears all of the counters by

which the states are generated so that the FFT calculation

is restarted. The done-fft informs the other blocks that

calculation is over and the output is ready. The gate

surface circuit for control unit which is gained by

simplifyprogram has been presented in fig. 13.

Fig.12. The memory bank in gate surface designed by

Simplify program

Table 1: Memory mapping

Ban

k0

Ban

k1

Ban

k2

Ban

k3

Ban

k4

Ban

k5

Ban

k6

Ban

k7

0 1 2 3 4 5 6 7

15 8 9 10 11 12 13 14

22 23 16 17 18 19 20 21

29 30 31 24 25 26 27 28

36 37 38 39 32 33 34 35

43 44 45 46 47 40 41 42

50 51 52 53 54 55 48 49

57 58 59 60 61 62 63 56

[31:0]

[31:0]

SCM

 mcmone_1

SCM

 mcmone_2

 un11_results[31:0]

+

 results_1[31:0]

+
0

clk

[31:16]
X[15:0]

[31:0]
Y1[31:0]

[31:0]
Y2[31:0]

0
clk

[15:0]
X[15:0]

[31:0]
Y1[31:0]

[31:0]
Y2[31:0]

[31:0]

[31:0]

[31:0]

[31:0]

[31:0][31:0]

1

results[63:0]

multiplier[31:0]
[31:0]

bc[31:2]
[31:2]

mcmone_2.w5[17:6]
[17:6]

mcmone_2.w1283[2]

mcmone_2.w6415[29:3]
[29:3]

bc_c[1:0]
[1:0]

ac[31:2]
[31:2]

mcmone_1.w6415[29:2]
[29:2]

mcmone_1.w5[17:6]
[17:6]

ac_c[1:0]
[1:0]

multiplierz[24:3]
[24:3]

multiplier_c[31:2]
[31:2]

SCM

 mcmone_1

SCM_1

 mcmone_2

MULT_AND

 I_793

MULT_AND

 I_791

MULT_AND

 I_789

MULT_AND

 I_787

INV

 w5_i[9]

INV

 w5_i_0[9]

INV

 w5_i[13]

INV

 w5_i[14]

INV

 w5_i[15]

INV

 w5_i_0[13]

INV

 w5_i_0[14]

INV

 w5_i_0[15]

INV

 w5_i[10]

INV

 w5_i_0[10]

LUT2_2

 G_460

LUT2_2

 G_576

LUT2_9

 G_355

LUT2_9

 G_167

LUT3_4D

 N_978_i

0

1

LUT3_4D

 N_965_i

0

1

LUT3_B2

 G_51

0

1

LUT3_B2

 G_239

0

1

LUT3_8E

 N_974_i

0

1

LUT3_8E

 N_975_i

0

1

LUT3_8E

 N_976_i

0

1

LUT3_8E

 N_977_i

0

1

LUT3_8E

 N_981_i

0

1

LUT3_B2

 N_970_i

0

1

LUT3_B2

 N_971_i

0

1

LUT3_8E

 N_961_i

0

1

LUT3_8E

 N_962_i

0

1

LUT3_8E

 N_963_i

0

1

LUT3_8E

 N_964_i

0

1

LUT3_8E

 N_968_i

0

1

LUT3_B2

 N_957_i

0

1

LUT3_B2

 N_958_i

0

1

LUT3_71

 G_46

0

1

LUT3_71

 G_234

0

1

LUT2_E

 N_973_i

LUT2_E

 N_960_i

LUT2_1

 G_135

LUT2_1

 G_323

[31]
multiplier_c_13

[30]
multiplier_c_12

[29]
multiplier_c_11

[28]
multiplier_c_10

[27]
multiplier_c_9

[26]
multiplier_c_8

[25]
multiplier_c_7

[18]
multiplier_c_0

[10]
w5_i_4

[15]
w5_i_9

[14]
w5_i_8

[13]
w5_i_7

[9]
w5_i_3

I_787_n

I_789_n

N_973_i

N_974_i

N_975_i

N_976_i

N_977_i

N_978_i

N_979

N_980

N_981_i

G_167_n

N_970_i

N_971_i

G_576_n

G_135_n

[24:19]
multiplierz[24:19]

[1:0]
ac_c[1:0]

[6]
w5_0

[17]
w5_11

[16]
w5_10

[15]
w5_9

[14]
w5_8

[13]
w5_7

[11]
w5_5

[10]
w5_4

[9]
w5_3

[8]
w5_2

[7]
w5_1

[29:2]
w6415[29:2]

[31:2]
ac[31:2]

[15]
multiplier_c_13

[14]
multiplier_c_12

[13]
multiplier_c_11

[12]
multiplier_c_10

[11]
multiplier_c_9

[10]
multiplier_c_8

[9]
multiplier_c_7

[2]
multiplier_c_0

[10]
w5_i_4

[15]
w5_i_9

[14]
w5_i_8

[13]
w5_i_7

[9]
w5_i_3

I_791_n

I_793_n

N_960_i

N_961_i

N_962_i

N_963_i

N_964_i

N_965_i

G_239_n

G_234_n

N_968_i

G_355_n

N_957_i

N_958_i

G_460_n

G_323_n

[8:3]
multiplierz[8:3]

[1:0]
bc_c[1:0]

[3]
w6415_1

[4]
w6415_2

[5]
w6415_3

[6]
w6415_4

[7]
w6415_5

[8]
w6415_6

[9]
w6415_7

[10]
w6415_8

[11]
w6415_9

[12]
w6415_10

[13]
w6415_11

[14]
w6415_12

[15]
w6415_13

[16]
w6415_14

[17]
w6415_15

[18]
w6415_16

[19]
w6415_17

[20]
w6415_18

[21]
w6415_19

[22]
w6415_20

[23]
w6415_21

[24]
w6415_22

[25]
w6415_23

[26]
w6415_24

[27]
w6415_25

[29]
w6415_27

[28]
w6415_26

w1283_0
[6]

w5_0
[17]

w5_11
[16]

w5_10
[15]

w5_9
[14]

w5_8
[13]

w5_7
[11]

w5_5
[10]

w5_4
[9]

w5_3
[8]

w5_2
[7]

w5_1

[31:2]
bc[31:2]

I0
1

I1
LO

[8]
I0

1
I1

LO

I0
1

I1
LO

[8]
I0

1
I1

LO

[9]
I

[9]
O

[9]
I

[9]
O

[13]
I

[13]
O

[14]
I

[14]
O

[15]
I

[15]
O

[13]
I

[13]
O

[14]
I

[14]
O

[15]
I

[15]
O

[10]
I

[10]
O

[10]
I

[10]
O

[15]

[9]

[15]

[9]

[3]

[13]

[19]

[13]

[25]

[27]

[9]

[11]

[24]

[26]

[8]

[10]

[7]

[29]

[31]

[6]

[28]

[30]

[5]

[27]

[29]

[4]

[26]

[28]

[0]

[22]

[24]

[1]

[11]

[17]

[0]

[10]

[16]

[7]

[13]

[15]

[6]

[12]

[14]

[5]

[11]

[13]

[4]

[10]

[12]

[0]

[6]

[8]

[1]

[11]

[17]

[0]

[10]

[16]

[1]

[23]

[25]

[1]

[7]

[9]

[8]

[30]

[8]

[14]

[0]

[1]

[0]

[1]

read_add_c[2:0]
[2:0]

write_add_c[2:0]
[2:0]

write_data[31:0]
[31:0]

memwrite_en_c

read_data[31:0]
[31:0]

clk_c

BUFGP

 clk_ibuf

OBUF

 read_data_obuf[31]

OBUF

 read_data_obuf[30]

OBUF

 read_data_obuf[29]

OBUF

 read_data_obuf[28]

OBUF

 read_data_obuf[27]

OBUF

 read_data_obuf[26]

OBUF

 read_data_obuf[25]

OBUF

 read_data_obuf[24]

OBUF

 read_data_obuf[23]

OBUF

 read_data_obuf[22]

OBUF

 read_data_obuf[21]

OBUF

 read_data_obuf[20]

OBUF

 read_data_obuf[19]

OBUF

 read_data_obuf[18]

IBUF

 memwrite_en_ibuf

IBUF

 write_data_ibuf[31]

IBUF

 write_data_ibuf[30]

IBUF

 write_data_ibuf[29]

IBUF

 write_data_ibuf[28]

IBUF

 write_data_ibuf[27]

IBUF

 write_data_ibuf[26]

IBUF

 write_data_ibuf[25]

IBUF

 write_data_ibuf[24]

IBUF

 write_data_ibuf[23]

IBUF

 write_data_ibuf[22]

IBUF

 write_data_ibuf[21]

IBUF

 write_data_ibuf[20]

IBUF

 write_data_ibuf[19]

IBUF

 write_data_ibuf[18]

IBUF

 write_add_ibuf[2]

IBUF

 write_add_ibuf[1]

IBUF

 write_add_ibuf[0]

IBUF

 read_add_ibuf[2]

IBUF

 read_add_ibuf[1]

IBUF

 read_add_ibuf[0]

RAM16X1D

 memory.I_26

RAM16X1D

 memory.I_25

RAM16X1D

 memory.I_24

RAM16X1D

 memory.I_23

RAM16X1D

 memory.I_22

RAM16X1D

 memory.I_21

RAM16X1D

 memory.I_19

RAM16X1D

 memory.I_12

RAM16X1D

 memory.I_11

RAM16X1D

 memory.I_10

RAM16X1D

 memory.I_9

RAM16X1D

 memory.I_8

RAM16X1D

 memory.I_6

RAM16X1D

 memory.I_3

I O

[31] I [31]O

[30] I [30]O

[29] I [29]O

[28] I [28]O

[27] I [27]O

[26] I [26]O

[25] I [25]O

[24] I [24]O

[23] I [23]O

[22] I [22]O

[21] I [21]O

[20] I [20]O

[19] I [19]O

[18] I [18]O

I O

[31] I [31]O

[30] I [30]O

[29] I [29]O

[28] I [28]O

[27] I [27]O

[26] I [26]O

[25] I [25]O

[24] I [24]O

[23] I [23]O

[22] I [22]O

[21] I [21]O

[20] I [20]O

[19] I [19]O

[18] I [18]O

[2] I [2]O

[1] I [1]O

[0] I [0]O

[2] I [2]O

[1] I [1]O

[0] I [0]O

[0]
A0

[1]
A1

[2]
A2

0
A3

[27]
D

[0]
DPRA0

[1]
DPRA1

[2]
DPRA2

0
DPRA3

WCLK

WE

[27]
DPO

SPO

[0]
A0

[1]
A1

[2]
A2

0
A3

[20]
D

[0]
DPRA0

[1]
DPRA1

[2]
DPRA2

0
DPRA3

WCLK

WE

[20]
DPO

SPO

[0]
A0

[1]
A1

[2]
A2

0
A3

[19]
D

[0]
DPRA0

[1]
DPRA1

[2]
DPRA2

0
DPRA3

WCLK

WE

[19]
DPO

SPO

[0]
A0

[1]
A1

[2]
A2

0
A3

[23]
D

[0]
DPRA0

[1]
DPRA1

[2]
DPRA2

0
DPRA3

WCLK

WE

[23]
DPO

SPO

[0]
A0

[1]
A1

[2]
A2

0
A3

[24]
D

[0]
DPRA0

[1]
DPRA1

[2]
DPRA2

0
DPRA3

WCLK

WE

[24]
DPO

SPO

[0]
A0

[1]
A1

[2]
A2

0
A3

[28]
D

[0]
DPRA0

[1]
DPRA1

[2]
DPRA2

0
DPRA3

WCLK

WE

[28]
DPO

SPO

[0]
A0

[1]
A1

[2]
A2

0
A3

[25]
D

[0]
DPRA0

[1]
DPRA1

[2]
DPRA2

0
DPRA3

WCLK

WE

[25]
DPO

SPO

[0]
A0

[1]
A1

[2]
A2

0
A3

[31]
D

[0]
DPRA0

[1]
DPRA1

[2]
DPRA2

0
DPRA3

WCLK

WE

[31]
DPO

SPO

[0]
A0

[1]
A1

[2]
A2

0
A3

[22]
D

[0]
DPRA0

[1]
DPRA1

[2]
DPRA2

0
DPRA3

WCLK

WE

[22]
DPO

SPO

[0]
A0

[1]
A1

[2]
A2

0
A3

[26]
D

[0]
DPRA0

[1]
DPRA1

[2]
DPRA2

0
DPRA3

WCLK

WE

[26]
DPO

SPO

[0]
A0

[1]
A1

[2]
A2

0
A3

[30]
D

[0]
DPRA0

[1]
DPRA1

[2]
DPRA2

0
DPRA3

WCLK

WE

[30]
DPO

SPO

[0]
A0

[1]
A1

[2]
A2

0
A3

[21]
D

[0]
DPRA0

[1]
DPRA1

[2]
DPRA2

0
DPRA3

WCLK

WE

[21]
DPO

SPO

[0]
A0

[1]
A1

[2]
A2

0
A3

[29]
D

[0]
DPRA0

[1]
DPRA1

[2]
DPRA2

0
DPRA3

WCLK

WE

[29]
DPO

SPO

[0]
A0

[1]
A1

[2]
A2

0
A3

[18]
D

[0]
DPRA0

[1]
DPRA1

[2]
DPRA2

0
DPRA3

WCLK

WE

[18]
DPO

SPO

memwrite_en

write_data[31:0]
[31:0]

read_data[31:0]
[31:0]

write_add[2:0]
[2:0]

read_add[2:0]
[2:0]

clk

Copyright © 2014 IJECCE, All right reserved

1114

International Journal of Electronics Communication and Computer Engineering

Volume 5, Issue 5, ISSN (Online): 2249–071X, ISSN (Print): 2278–4209

Fig.13. The gate surface circuit of control unit designed by

Simplify program

IV. MEASURING

The architecture was implemented by Verilog language

and was simulated by Mentor Graphics’ Modelsim

program. The performance got approved. The Verilog -

generated signals of FFT processor is presented in fig. 14.

The memory banks should by randomly initialized in

order to generate such signals. The initial and final values

which are registered in memory banks are brought in

tables 2 and 3.

The output digits of FFT inversely appear so it should

be reformed to the original state. Also, the outputs

butterflies are scaled by 0.5 to prevent the calculation-

originated overflow. The calculation of 64-point FFT takes

196 cycles. The processor' clock can reach to the

frequency of 40 MHz which can result in the latency

about. This FFT has been rewritten by core processor

[3].For calculation of the IFFT in this processor, we just

need to exchange the imaginary and real values of both

input and outputs [1] or to make both input and output

conjugated [4].

V. CONCLUSION

In report an OFDM-based 64-point FFT/IFFT

architecture for high speed WLAN systems was explored.

In order to gain a less power consumption and less silicon

surface, adders and shifters were employed instead of

direct imaginary multiplier. Moreover, in order to decrease

the processing time and to meet the IEEE 802.11 standard,

8 memory banks were used in the FFT processor. This

strategy yielded the major time reduction in access to the

memory. The designed FFT processor prepares the output

in sec2 which is less than standard limit introduced in

IEEE 802.11 standard [1].

Table 2: The initial values of memory banks in base 16

Bank

Address

0 1 2 3 4 5 6 7

7 12153524 80010e00 80021c00 80032a00 80043800 80054600 80065400 80076200

6 c0895e81 9c598438 b8b1fc71 d50a72aa f162e8e2 0dbb5f1b 2a13d554 466c4b8c

5 8484d609 43593986 ea58ecd4 9158a022 38585570 df5808be 8657bc0c 2d57715a

4 b1f05663 ae130c5c 18ccdf31 8386b007 ee4084dc 58fa57b1 c3b42887 2e6dfb5c

3 06b97b0d 672307ce 20330340 d942fcb2 9252f824 4b62f396 0472ef08 bd82ea7b

2 46df998d 63cc97c7 607625c0 5d1fb5ba 59c945b3 5672d3ac 531c63a6 4fc5f39f

1 b2c28465 e3132cc6 6259c1c4 e1a056c3 60e6edc1 e02d82c0 5f7419be debaaebd

0 89375212 f9d762f3 109b9921 275fcf4e 3e24057c 54e83ba9 6bac71d7 8270a604

Table 3: Thevalues of memory bank in base 16 at the end of calculation

Bank

Address

0 1 2 3 4 5 6 7

7 00a0fee9 fadafedc 045100cc faf4035f f7be0128 03ed03e2 02dd0a00 ee4103d1

6 fdddf7f9 ffcdf75f fa850982 ffa8f54a fd270bcc f88b026f fc9b00d9 00fbeee3

5 fb60fdbe f697ffdf 08e4f80f 01740c13 0c9df672 050904cf fe6dfb8f fe5ef662

4 0c44f888 0036fbc8 fcfdfd40 f207feab 0249049f f7d702b1 fdfb03aa fc80fb93

3 0daefae7 0033fc55 fce50008 052cf0bb 0546fe34 0228faf4 00c30917 0a9cfe64

2 fc95f640 112f0649 fec8014f 00fe0bbc fe58fd00 09f40336 015503ab 014c00e1

1 fca0fcb9 0445f5d2 ff7c0c7a 0264f825 06f1ffbf eeebf967 fe6cfe1a 05bcf954

0 fe230743 0499fd51 03f40632 00f80466 f809044a fbf9fcda 02ddfedd 052efd98

counter_4_rep1_fast

counter_0_rep1

counter_0_rep1_rep1

controlsig959_i

N_1659

counter_2_rep1

counter_1_rep1
controlsig992_i

controlsig958_i

controlsig999_i
N_1682

controlsig991_i

N_1669

G_4_0_L4_n

counter_7_rep1

controlsig954_6

N_1325

G_4_0_0_rn_0

G_4_0_0_sn

counter_5_rep2_fast

en_fft_c

clk_c

counter_s[6:0]
[6:0]

controlsig971_i

N_1393

G_4_0_2_L4_n
N_1660

counter_2_rep2_fast

counter_1_rep2_rep1

controlsig968_i
N_1688

controlsig976_i

N_1684

counter_4_rep2_rep1

un1_counter_1_1_1_1_1_1_1_1_1_1_1_0_1_0

N_1674

controlsig957_i_x1_n

counter_0_rep2_rep1

controlsig965_i

N_1678

counter_3_rep2_rep1

controlsig982_i

controlsig964_i

N_1375

N_1374

controlsig983_i

controlsig975_i

counter_fast[7:0]
[7:0]

N_1377

controlsig957_i_true_n

LUT1_3

 controlsig999_i_true

LUT1_3

 controlsig991_i_true

LUT1_3

 controlsig957_i_true

LUT4_FFBF

 controlsig975_i

LUT4_FFBF

 controlsig983_i

LUT2_2

 controlsig983_i_1_0

LUT4_L_EFFF

 controlsig964_i

LUT4_FBFF

 controlsig982_i

LUT4_0002

 controlsig982_i_1_0

LUT4_FDFF

 controlsig965_i

LUT3_7F

 controlsig965_i_1_0

LUT4_7FFF

 controlsig957_i_x1

LUT4_0045

 un1_counter_1_1_1_1_1_1_1_1_1_1_1_0_1_0

LUT4_5554

 un1_counter_1_1_1_1_1_1_1_1_1_1_1_0_1_0_sx

LUT3_02

 controlsig964_i_1

LUT4_F7FF

 controlsig976_i

LUT4_F7FF

 controlsig968_i

LUT3_02

 controlsig968_i_1

LUT4_FDFF

 G_4_0_2_L4

LUT4_L_BFFF

 controlsig971_i

LUT3_20

 controlsig971_i_1

LUT3_10

 controlsig975_i_1

LUT3_20

 controlsig983_i_1

FDR

 counter_6_rep2_fast

FDR

 counter_5_rep2_fast

FDR

 counter_4_rep2_fast

FDR

 counter_3_rep2_fast

FDR

 counter_1_rep2_fast

FDR

 counter_0_rep2_fast

LUT4_L_0070

 G_4_0_0_sn

LUT2_8

 G_4_0_0_rn

LUT4_4000

 G_4_0_L4

MUXF5

 controlsig991_i

LUT4_FDFF

 controlsig991_i_x1

MUXF5

 controlsig999_i

LUT4_FDFF

 controlsig999_i_x1

LUT4_FFFD

 controlsig958_i

LUT3_FD

 controlsig992_i

LUT4_L_FDFF

 controlsig992_i_sx

LUT4_FEFF

 controlsig958_i_sx

LUT4_L_FF7F

 controlsig959_i

LUT2_2

 controlsig959_i_1

LUT2_L_2

 controlsig999_i_1

LUT2_L_2

 controlsig991_i_1

LUT3_L_04

 controlsig957_i_1

LUT2_2

 controlsig958_i_1

LUT4_0800

 G_4_0_a6_1_5

LUT4_0010

 G_4_0_a6_1_4

LUT3_40

 m295_0_0_a2_6

0

0

0

[2]

[2]

[0]

[1]

[7]

[2]

[7]

[0]

[1]

[6]

[6]

[7]

[1]

[2]

[1]

[2]

[7]

[0]

[1]

[2]

[0]

[6]

[6]

[7]

[6]

[7]

[0]

[6]

[7]

[0][6]

[7]

[6]

[7]

[6]

[7]

[6]
D

C

R

Q

[5]
D

C

R

Q

[4]
D

C

R

Q

[3]
D

C

R

Q

[1]
D

C

R

Q

[0]
D

C

R

Q

I0

I1

S

O

[2]

[6]

[7]

I0

I1

S

O

[2]

[6]

[7]

[3]

[5]

[0]

[6]

[7]

[0]

[1]

[2]

[7]

[2]

[1]

[1]

[1]

[0]

[6]

[6]

[3]

[4]

[5]

Copyright © 2014 IJECCE, All right reserved

1115

International Journal of Electronics Communication and Computer Engineering

Volume 5, Issue 5, ISSN (Online): 2249–071X, ISSN (Print): 2278–4209

Fig.14. The generated signals simulated by Mentor

Graphics’ Modelsim software

REFERENCES

[1] K. Maharatna, E. Grass, U. Jagdhold, “A 64-point Fourier

transform chip for high-speed wireless LAN application using

OFDM”, IEEE J. Solid-State Circuits, vol. 39, pp. 484-493, Mar.
2004

[2] B. M. Baas, “An approach to low-power, high-performance, fast

Fourier transform processor design,” Dissertation, Stanford
University, Stanford, CA, 1999.

[3] Arish Alreja, "Real Time OFDM engine for High Speed

Wireless Applications", GEORGIA INSTITUTE OF
TECHNOLOGY, ECE 4902.

[4] Yuan Chen; Yu-Wei Lin, Chen-Yi Lee, "A Block Scaling

FFT/IFFT Processor for WiMAX Applications, " Solid-State
Circuits Conference, 2006. ASSCC 2006. IEEE Asian , vol., no.,

pp.203-206, 13-15 Nov. 2006.

[5] J. C. Candy and G. C. Temes, “Oversampling Delta-Sigma Data
Converters,” Piscataway, NJ: IEEEPress, 1992, ISBN 0-87942-

285-8

[6] S. R. Northworthy, R. Schreier, and G. C. Temes, “Delta-Sigma
Data Converters,” Piscataway, NJ: IEEE Press, 1997, ISBN 0-

7803-1045-4

[7] Mohammad Yavari and OmidShoaei,”A 3.3V Second-Order
Sigma-Delta Modulator for Digital Audio,” Electrical &

Computer Engineering Department, University of Tehran, Iran

[8] ShahriarRabii and Bruce A. Wooley,”A 1.8-V Digital-Audio
Sigma-Delta Modulatorin 0.8-m CMOS,” Stanford

University.Stanford, CA 94305

[9] SumithkumarNathany ,”14- bit Fully differential discrete time
sigma-delta modulator,”A Thesis for the Degree of master of

science Department Of Electrical Engineering KATE

GLEASON College Of Engineering. Rochester Institute Of
Technology .ROCHESTER, NEW YORKNOVEMBER 2006

[10] brianP.Brandt, drew E.Wingard ,Bruce A.Wooley ,”Second

Order Sigma-Delta Modulation For Digital-Audio Signal
Acquisition,” IEEE JOURNAL OF SOLID STATE CIRCUITS

,26(4) ,APRIL 1991

	PointTmp

